Effects of magnetic reconnection on coronal plasma acceleration and energy balance have been discussed. Acceleration of coronal plasma to the array axis can be divided into two stages. Firstly, coronal plasma is pushed radially inward the array axis mainly by global magnetic force or thermal force, depending on the wire number. Secondly, plasma jets are accelerated to Alfven speed by magnetic reconnection, eventually reaching the array axis as precursor pinch. The thickness of the reconnection layer that is comparable to the ion inertial length indicates the motions of electrons and ions are decoupled in the current sheet. Strong radial electric field produced by charge separation converts magnetic energy to axial kinetic energy of plasmas, and thermalization of radial and axial kinetic energy accounts for radiation yield. For facilities with 1 MA drive level, the energy of electromagnetic pulse produced by magnetic reconnection can reach 1 kJ.