留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁混响室搅拌方式研究综述

赵翔 茹梦圆 闫丽萍 刘长军

赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32: 063001. doi: 10.11884/HPLPB202032.200079
引用本文: 赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32: 063001. doi: 10.11884/HPLPB202032.200079
Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001. doi: 10.11884/HPLPB202032.200079
Citation: Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001. doi: 10.11884/HPLPB202032.200079

电磁混响室搅拌方式研究综述

doi: 10.11884/HPLPB202032.200079
基金项目: 国家自然科学基金面上项目(61877041)
详细信息
    作者简介:

    赵 翔(1973—),女,教授,从事电磁兼容分析与电磁效应评估研究;zhaoxiang@scu.edu.cn

  • 中图分类号: TM152

A review of research on stirring methods of electromagnetic reverberation chamber

  • 摘要:

    电磁混响室是进行有限空间内电磁兼容、电磁效应测试以及无线信道模拟的重要设备。搅拌方式是混响室的核心内容。主要从改变混响室边界条件和激励源配置的角度,对国内外混响室搅拌方式的研究历史和现状进行分类介绍,列举了一些具有代表性的实现方案,总结了各种方式的特点,介绍了混合搅拌方式的研究进展。

  • 图  1  IEC 61000-4-21(2002)标准中的混响室原理图

    Figure  1.  Mechanical mode stirrer reverberation chamber as described in IEC-61000–4-21,2002,picture extracted from Ref. [5]

    图  2  四川大学建造的Z字形搅拌器

    Figure  2.  Z-fold stirrer at Sichuan University

    图  3  约克大学建造的弯板式搅拌器

    Figure  3.  “Bent-Plates” stirrer at the University of York, picture extracted from Ref. [12]

    图  4  英国国家物理实验室所搭建的不规则可重构搅拌器

    Figure  4.  Irregular reconfigurable stirrer in the RC at NPL, picture extracted from Ref. [8]

    图  5  意大利马尔凯理工大学所搭建的旋转木马搅拌器

    Figure  5.  Carousel stirrer at the DII,Università Politecnica delle Marche, picture extracted from Ref. [18]

    图  6  用绳子悬挂的振动固有混响室

    Figure  6.  Vibrating intrinsic reverberation chamber hanging on strings,picture extracted from Ref. [23]

    图  7  英国国家物理实验室所搭建的体育馆型混响室

    Figure  7.  Stadium RC at NPL,picture extracted from Ref. [24]

    图  8  荷兰埃因霍芬理工大学所搭建的振荡型混响室

    Figure  8.  Oscillating stirrer at the RC facility of Eindhoven University of Technology,picture extracted from Ref. [28]

    图  9  美国Comtest Engineering公司所搭建的振荡型混响室

    Figure  9.  Oscillating stirrer at the RC facility of Comtest Engineering,picture extracted from Ref. [29]

    图  10  开关搅拌混响室原理图

    Figure  10.  Schematic diagram of a switch stirred reverberation chamber,picture extracted from Ref. [8]

    图  11  电抗性负载天线搅拌混响室原理图

    Figure  11.  Schematic diagram of an RC implementing the reactively-loaded,picture extracted from Ref. [43]

    图  12  两天线的混响室及其等效电路模型

    Figure  12.  Basic arrangement of overmoded cavity(chamber)with two coupling antennas and simplified network model,picture extracted from Ref. [43]

    图  13  使用Schroeder散射体的机械搅拌混响室

    Figure  13.  Mechanical reverberation chambers with Schroeder diffuser,picture extracted from Ref. [45]

    图  14  实验测得的电场标准差对比

    Figure  14.  Comparison of electric field standard deviation, picture extracted from Ref. [50]

    图  15  超表面材料单元结构的前视图

    Figure  15.  Front view of metasurface unit structure, picture extracted from Ref. [50]

    图  16  使用超表面材料的内置机械搅拌器搅拌混响室

    Figure  16.  Mechanical reverberation chamber with metasurface walls,picture extracted from Ref. [50]

    图  17  使用轨道角动量超表面材料的内置机械搅拌器搅拌混响室

    Figure  17.  Mechanical reverberation chamber with the orbital angular momentum,picture extracted from Ref. [51]

    图  18  加2个金属球散射体的内置机械搅拌器搅拌混响室

    Figure  18.  Mechanical reverberation chamber with two hemispherical diffractors,picture extracted from Ref. [52]

    图  19  固定多个金属球散射体的内置机械搅拌器搅拌混响室

    Figure  19.  Mechanical reverberation chamber with fixed metallic spheres,picture extracted from Ref. [53]

    图  20  在内置机械搅拌器搅拌方式、振荡搅拌方式和两种搅拌方式一起使用时的混响室内工作空间占比情况

    Figure  20.  Working-to-total volume ratio as a function of the stirred-to-total volume ratio for three different stirring strategies: A classical rotating stirrer, the OWS,and the hybrid source-tuner stirring technique,picture extracted from Ref. [56]

    表  1  各种单一搅拌方式及其特点

    Table  1.   Various single stirring methods and their characteristics

    搅拌方式特点
    改变腔体边界条
    件的搅拌方式
    内置机械搅拌器搅拌 Z字型搅拌器 所需的机械阻尼时间少;驱动系统规模小。 优点:目前研究最多,使用最广泛的搅拌器类型。能形成良好的场环境。
    缺点:低频性能较差;测试所需的时间较长;搅拌器占据部分空间,工作空间占比小;搅拌器结构复杂,设计和分析较为困难;成本较高。
    弯板式搅拌器 搅拌器便于优化。
    不规则可重构
    搅拌器
    搅拌器桨叶可拆卸,易于拆除和重新配置。
    旋转木马搅拌器 相比于传统的Z字形搅拌器,这种搅拌器能提高场环境均匀性,旋转一周中的独立采样点位置也更多。
    改变腔体结构搅拌 振动固有混响室 结构简单,便于在待测器件处现场搭建。 优点:有着较低的最低可用工作频率;有效利用了腔体空间,增加了工作空间的总体占比;搅拌效率较高,所需测试时间较短。
    缺点:仿真和数值分析较为困难。
    体育馆型混响室 搅拌过程中模密度保持恒定,腔内所有状态在统计上等价,有助于场统计特性的计算。
    振荡器搅拌 需要大量搅拌器,成本高。
    开关搅拌 结构复杂,设计实现较为困难。
    改变源配置的
    搅拌方式
    频率搅拌 窄带高斯白噪声信号搅拌 能实现“实时均匀”场环境。 优点:结构简单,设计实现较为方便,成本较低;工作空间占比较大;所需测试时间短。
    缺点:场均匀性较差。
    连续波信号搅拌 扫频信号所需带宽可能会大于被测试器件的响应带宽。
    源搅拌 改变源位置搅拌 建造简单;成本较低;工作空间占比较大;操作繁琐。 优点:有较低最低可用频率。
    缺点:实现困难。
    随机多天线搅拌 成本较高。
    电抗性负载天线
    搅拌
    有等效电路模型,便于研究场均匀性;成本较高。
    下载: 导出CSV
  • [1] Corona P, Latmiral G. Valutazione ed impiego normativo d ella camera riverberante dell’Istituto Universitario Navale[J]. Atti I Riunione Nazionale di Elettromagnetismo Applicato, 1976: 103-108.
    [2] CISPR/A/(Sec.)82, Specifications for radio disturbance and immunity measuring apparatus[S].
    [3] GB/T 6113.1-1995, 无线电骚扰和抗扰度测量设备规范[S].

    GB/T 6113.1-1995, Specifications for radio disturbance and immunity measuring apparatus
    [4] MIL-STD-46IE, Military Standard: electromagnetic interference characteristics requirements for equipment[S].
    [5] IEC-61000-4-21(2002), Electromagnetic compatibility (EMC)-Part4-21: Testing and measurement techniques-Reverberation chamber test methods(2002)[S].
    [6] IEC-61000-4-21(2011), Electromagnetic compatibility (EMC)-Part4-21: Testing and measurement techniques—Reverberation chamber test methods(2011)[S].
    [7] Cellular Telecommunications and Internet Association.Test plan for wireless device over-the-air performance method of measurement for radiated RF power and receiver performance (Version 3.5)[S].
    [8] Serra R, Marvin A C, Moglie F, et al. Reverberation chambers a la carte: An overview of the different mode-stirring techniques[J]. IEEE Electromagnetic Compatibility Magazine, 2017, 6(1): 63-78.
    [9] Serra R. Reverberation chambers through the magnifying glass: An overview and classification of performance indicators[J]. IEEE Electromagnetic Compatibility Magazine, 2017, 6(2): 76-88.
    [10] International Special Committee on Radio Interference. Reverberation chamber tuner and shaft with electromagnetic radiation leakage device: US6, 686, 818 B1[P].2004-04-26.
    [11] Bäckström M, Lundén O. Transmission cross sections of apertures measured by use of nested mode-stirred chambers[R]. FOA-R-96-00359-3.2-SE, 1996.
    [12] Clegg J, Marvin A C, Dawson J F, et al. Optimization of stirrer designs in a reverberation chamber[J]. IEEE Trans Electromagn Compat, 2005, 47(4): 824-832. doi: 10.1109/TEMC.2005.860561
    [13] Arnaut L R. Operation of electromagnetic reverberation chambers with wave diffractors at relatively low frequencies[J]. IEEE Trans Electromagn Compat, 2001, 43(4): 637-653. doi: 10.1109/15.974645
    [14] Lunden O, Backstrom M. A factorial designed experiment for evaluation of mode-stirrers in reverberation chambers[C]//IEEE 2003 International Symposium on Electromagnetic Compatibility. 2003. EMC'03. 2003, 1: 465-468.
    [15] Arnaut L R. Effect of size, orientation, and eccentricity of mode stirrers on their performance in reverberation chambers[J]. IEEE Trans Electromagn Compat, 2006, 48(3): 600-602. doi: 10.1109/TEMC.2006.879256
    [16] Wellander N, Lundén O, Backstrom M. Experimental investigation and mathematical modeling of design parameters for efficient stirrers in mode-stirred reverberation chambers[J]. IEEE Trans Electromagn Compat, 2007, 49(1): 94-103. doi: 10.1109/TEMC.2006.888166
    [17] Lundén O, Wellander N, Bäckström M. Stirrer blade separation experiment in reverberation chambers[C]// IEEE 2010 International Symposium on Electromagnetic Compatibility. 2010: 526-529.
    [18] Fedeli D, Iualè M, Primiani V M, et al. Experimental and numerical analysis of a carousel stirrer for reverberation chambers[C]//IEEE 2012 International Symposium on Electromagnetic Compatibility. 2012: 228-233.
    [19] Huang Y. The investigation of chambers for electromagnetic systems[D]. Oxford: University of Oxford, 1993: 70-76.
    [20] Leferink F B J. Test Chamber: Patent NL1010745[P]. 1998-12-07.
    [21] Leferink F B J, van Etten W. Optimal utilization of a reverberation chamber[C]//4th European Symposium on Electromagnetic Compatibility. 2000: 201-206.
    [22] Leferink F, van Etten W C. Generating an EMC test field using a vibrating intrinsic reverberation chamber[J]. EMC Society Newsletter, 2001: 19-25.
    [23] Serra R, Rodriguez A. Vibrating intrinsic reverberation chamber for electromagnetic compatibility measurements[J]. IEEE Latin America Transactions, 2013, 11(1): 389-395. doi: 10.1109/TLA.2013.6502835
    [24] Arnaut L R, West P D. Evaluation of the NPL untuned stadium reverberation chamber using mechanical and electronic stirring techniques [R]. NPL Report CEM 11, 1998
    [25] Arnaut L R. Untuned 3D stadium reverberation chamber for microwave and millimeter-wave frequencies[C]//Proc 1999 Mode-stirred Chamber, Anechoic Chamber and OATS Users Meeting. 1999: 3-9.
    [26] Arnaut L R, West P D. Electromagnetic reverberation near a perfectly conducting boundary[J]. IEEE Trans Electromagn Compat, 2006, 48(2): 359-371. doi: 10.1109/TEMC.2006.874087
    [27] Arnaut L R, Serra R, West P D. Statistical anisotropy in imperfect electromagnetic reverberation[J]. IEEE Trans Electromagn Compat, 2016, 59(1): 3-13.
    [28] Barakos D, Serra R. Performance characterization of the oscillating wall stirrer[C]//IEEE 2017 International Symposium on Electromagnetic Compatibility-EMC EUROPE. 2017: 1-4.
    [29] https://www.comtest.eu/components/mode-stirring-systems.
    [30] Klingler M. Dispositif et procédé de brassage électromagnétique dans unechambre réverbérante à brassage de modes: FR 2887337[P]. 2005-06-17.
    [31] Loughry T A. Frequency stirring: An alternate approach to mechanical mode-stirring for the conduct of electromagnetic susceptibility testing[R]. Phillips Lab Kirtland AFB NM, 1991.
    [32] Crawford M L, Loughry T A, Hatfield M O, et al. Band-limited, white Gaussian noise excitation for reverberation chambers and applications to radiated susceptibility testing[R]. National Institute of Standards and Technology, 1996.
    [33] Hatfield M O, Slocum M B. Frequency characterization of reverberation chambers[C]//IEEE Proceedings of Symposium on Electromagnetic Compatibility. 1996: 190-193.
    [34] Yu S P, Bunting C F. Statistical investigation of frequency-stirred reverberation chambers[C]//IEEE 2003 Symposium on Electromagnetic Compatibility. 2003, 1: 155-159.
    [35] 刘逸飞, 陈永光, 王庆国, 等. 频率搅拌混响室场均匀性与搅拌带宽选取方法分析[J]. 高电压技术, 2012, 38(9):2354-2359. (Liu Yifei, Chen Yongguang, Wang Qingguo, et al. Analysis of field uniformity and stirring bandwidth selection method in frequency stirring reverberation chamber[J]. High Voltage Technology, 2012, 38(9): 2354-2359
    [36] 徐鑫, 魏明, 程二威, 等. 扫频实现混响室频率搅拌的仿真和实验研究[J]. 科学技术与工程, 2013, 13(34):10162-10166. (Xu Xin, Wei Ming, Cheng Erwei, et al. Simulation and experimental study of frequency mixing in reverberation chamber with frequency sweeping[J]. Science Technology and Engineering, 2013, 13(34): 10162-10166 doi: 10.3969/j.issn.1671-1815.2013.34.011
    [37] 刘逸飞, 陈永光, 王庆国, 等. 基于线性扫频的频率搅拌混响室搅拌参数选取[J]. 电波科学学报, 2014, 29(2):363-368. (Liu Yifei, Chen Yongguang, Wang Qingguo, et al. Stirring parameter selection of frequency stirring reverberation chamber based on linear sweep[J]. Journal of Radio Science, 2014, 29(2): 363-368
    [38] Huang Y, Edwards D J. A novel reverberating chamber: the source-stirred chamber[C]//Eighth International Conference on Electromagnetic Compatibility. 1992: 120-124.
    [39] Cerri G, Primiani V M, Pennesi S, et al. Source stirring mode for reverberation chambers[J]. IEEE Trans Electromagn Compat, 2005, 47(4): 815-823. doi: 10.1109/TEMC.2005.858757
    [40] Cerri G, Primiani V M, Monteverde C, et al. A theoretical feasibility study of a source stirring reverberation chamber[J]. IEEE Trans Electromagn Compat, 2009, 51(1): 3-11. doi: 10.1109/TEMC.2008.2009530
    [41] Hill D A. Electronic mode stirring for reverberation chambers[J]. IEEE Trans Electromagn Compat, 1994, 36(4): 294-299. doi: 10.1109/15.328858
    [42] Cozza A, Koh W J, Ng Y S, et al. Controlling the state of a reverberation chamber by means of a random multiple-antenna stirring[C]//IEEE 2012 Asia-Pacific Symposium on Electromagnetic Compatibility. 2012: 765-768.
    [43] Voges E, Eisenburger T. Electrical mode stirring in reverberating chambers by reactively loaded antennas[J]. IEEE Trans Electromagn Compat, 2007, 49(4): 756-761. doi: 10.1109/TEMC.2007.908281
    [44] Godfrey E A. Reverberation chambers at low frequencies[C]//IEEE 1999 International Symposium on Electromagnetic Compatability. 1999, 1: 23-28.
    [45] 何鹏, 蒋全兴, 周香, 等. 声学散射体对混波室场均匀性的影响[J]. 微波学报, 2009, 25(2):38-42. (He Peng, Jiang Quanxing, Zhou Xiang, et al. Influence of reverberation chamber field uniformity using acoustic diffuser[J]. Journal of Microwaves, 2009, 25(2): 38-42
    [46] 黄华, 牛中奇, 白冰. 顶角设置QRD散射体的混响室内场均匀性分析[J]. 微波学报, 2011, 27(2):38-41. (Huang Hua, Niu Zhongqi, Bai Bing. Analyzing the field uniformity with QRD in the corner of a reverberation chamber[J]. Journal of Microwaves, 2011, 27(2): 38-41
    [47] 苏政铭, 闫丽萍, 杨旭萍, 等. 实验室用简易混响室设计[C]//2018 年全国微波毫米波会议论文集(上册). 2018.

    Su Zhengming, Yan Liping, Yang Xuping, et al. Design of a simple reverberation room for laboratory use[C]//Proc of the 2018 National Conference on Microwave and Millimeter Wave (Vol.1). 2018
    [48] Song J, Li Z, Sun H, et al. Field uniformity improvement at lower frequencies in a reverberation chamber using metasurfaces[C]// IEEE 2018 International Symposium on Electromagnetic Compatibility and IEEE 2018 Asia-Pacific Symposium on Electromagnetic Compatibility(EMC/APEMC). 2018: 1156-1159.
    [49] 冯一军. 电磁超表面: 电磁波散射调控新途径[C]//2017 年全国微波毫米波会议论文集(上册). 2017: 610.

    Feng Yijun. Electromagnetic metasurfaces: a new way to regulate electromagnetic wave scattering[C]//2017 Proceedings of the National Microwave and Millimeter Wave Conference (Vol.1).2017: 610).
    [50] Sun H, Wei M, Gu C, et al. Experimental investigation of the field uniformity in mode reverberation chambers with metasurface walls for low frequency regime[C]//IEEE 2019 European Microwave Conference in Central Europe (EuMCE). 2019: 31-34.
    [51] Chen X, Xue W, Shi H, et al. Improving field uniformity using source stirring with orbital angular momentum modes in a reverberation chamber[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(8): 560-562. doi: 10.1109/LMWC.2019.2924995
    [52] Magdowski M, Immidisetti J, Vick R. Experimental analysis of the field homogeneity and isotropy inside a reverberation chamber with two hemispherical diffractors[C]//IEEE 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018: 683-688.
    [53] Andrieu G, Ticaud N. Improvement of performances of a reverberation chamber with fixed metallic spheres using the “well-stirred” condition method[C]// IEEE 2019 International Symposium on Electromagnetic Compatibility—EMC EUROPE. 2019: 237-240.
    [54] Rosengren K, Kildal P S, Carlsson C, et al. Characterization of terminal antennas in reverberation chambers: Methods and results[C]//Nordic Radio Symposium. 2001.
    [55] Madsen K, Hallbjorner P, Orlenius C. Models for the number of independent samples in reverberation chamber measurements with mechanical, frequency, and combined stirring[J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3(1): 48-51.
    [56] Serra R, Barakos D. A novel hybrid source-tuner stirring allows for an extended working volume in RCs[C]//IEEE 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018: 699-703.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  2223
  • HTML全文浏览量:  726
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-05-08
  • 刊出日期:  2020-05-12

目录

    /

    返回文章
    返回