留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光聚变领域高性能条纹相机研究现状与展望

胡昕 李晋 刘慎业 张昆林 黎宇坤 王峰 杨家敏 丁永坤 江少恩 张兴

胡昕, 李晋, 刘慎业, 等. 激光聚变领域高性能条纹相机研究现状与展望[J]. 强激光与粒子束, 2020, 32: 112005. doi: 10.11884/HPLPB202032.200109
引用本文: 胡昕, 李晋, 刘慎业, 等. 激光聚变领域高性能条纹相机研究现状与展望[J]. 强激光与粒子束, 2020, 32: 112005. doi: 10.11884/HPLPB202032.200109
Hu Xin, Li Jin, Liu Shenye, et al. State of the art and future prospective of high performance streak cameras for laser fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112005. doi: 10.11884/HPLPB202032.200109
Citation: Hu Xin, Li Jin, Liu Shenye, et al. State of the art and future prospective of high performance streak cameras for laser fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112005. doi: 10.11884/HPLPB202032.200109

激光聚变领域高性能条纹相机研究现状与展望

doi: 10.11884/HPLPB202032.200109
基金项目: 国家重点研发计划项目(2017YFA04033);科学挑战专题项目(TZ2016001)
详细信息
    作者简介:

    胡 昕(1968—),男,高级工程师,从事时间分辨超快诊断技术研究;huxin88@sina.com

  • 中图分类号: O463;TL65

State of the art and future prospective of high performance streak cameras for laser fusion

  • 摘要: 条纹相机(包括X射线条纹相机和可见光光学条纹相机)是一种高时空分辨的诊断设备,在激光惯性约束聚变(ICF)物理实验研究中具有非常重要的应用。介绍了当今国内外激光聚变领域获得广泛应用的两种主要类型条纹相机的技术性能以及各自的技术特点,它们分别采用了同轴电极双聚焦电子光学扫描变像管和双板电极电子光学扫描管。在技术指标方面,重点论述了条纹相机动态范围的判据,分析了激光聚变实验对条纹相机动态范围的需求,介绍了当今国际上高性能条纹相机动态范围指标的现状。文章也介绍了和条纹相机发展应用相关的几项重要技术进展,这些进展包括先进光时标、抗辐射加固记录系统和抑制相机背景噪声的阴极选通技术。
  • 图  1  同轴电极双聚焦扫描管电子光学仿真图

    Figure  1.  Electron optics simulation map of coaxial electrode double-focus streak tube

    图  2  同轴电极双聚焦扫描管

    Figure  2.  Coaxial electrode double-focus streak tube

    图  3  激光聚变研究中心基于同轴电极双聚焦扫描管的气室型X射线条纹相机设计

    Figure  3.  LFRC’s present design of X-ray streak camera based on coaxial electrode double-focus streak tube inserted inside an air box

    图  4  同轴电极双聚焦扫描管空间分辨率测试结果

    Figure  4.  Tested resolution of coaxial electrode double-focus streak tube

    图  5  场曲校正MTF曲线

    Figure  5.  MTF curves for the Petzval corrector scheme

    图  6  双板电极电子光学扫描管仿真图和空间分辨率测试图

    Figure  6.  Electron optics simulation image of bilamellar streak tube showing the spatial resolution

    图  7  双板电极电子光学扫描管

    Figure  7.  Bilamellar electron optics streak tube

    图  8  阴极上的微点信号位置(沿时间轴)和强度计数关系曲线

    Figure  8.  Curves for signal position on the cathode vs CCD count

    图  9  有效阴极宽度和阴栅场强呈反比关系

    Figure  9.  Width of the collection surface as a function of the inverse of the extracting field

    图  10  同轴电极扫描管对宽阴极的静态聚焦图像

    Figure  10.  Static focused image of coaxial electrode double-focus streak tube

    图  11  双板电极扫描管对宽阴极的静态聚焦图像

    Figure  11.  Static focused image of bilamellar streak tube

    图  12  双阴极双板电极扫描管电子光学仿真和空间分辨率测试图像

    Figure  12.  Electron optics simulation map of double-cathode bilamellar streak tube and resolution chart

    图  13  双阴极双板电极扫描管局部照片

    Figure  13.  Photograph of double cathode of the streak tube

    图  14  紫外光纤将351 nm时标传输至双板电极扫描管阴极俯视图

    Figure  14.  Section view of bilamellar streak tube with 3ω backlighting ultraviolet fiducial

    图  15  4倍频时标光传输至阴极横断面图

    Figure  15.  Cross section of the streak tube with 4ω fiducial

    图  16  倒空型CMOS相机工作时序图

    Figure  16.  Timing of the CMOS charge dump and read camera

    图  17  hCMOS相机工作时序图

    Figure  17.  Timing of the hybrid CMOS camera

    图  18  触发脉冲、高压门脉冲和光信号脉冲时序关系

    Figure  18.  Temporal relations between trigger pulse,gating pulse and optical signal pulse

    图  19  阴极门控减少环境噪声效果图

    Figure  19.  Ambient noise reduction through cathode gating

    表  1  同轴电极扫描管X射线条纹相机技术指标

    Table  1.   Performance of X-ray streak camera based on coaxial cylinder electrode steak tube

    calibration testXsc1* of LFRC (coaxial cylinder electrode)notes
    temporal resolution 0.5% of full screen streak time 100 μm slit width before cathode
    spatial resolution/(lp·mm−1 20 @10%CTF in the center of the cathode
    dynamic range (5 ns sweep) ~200∶1 variation of 20% of the measured temporal FWHM
    effective cathode length/mm 30 5 lp/mm@10%CTF at the edge of the cathode
    magnification 1.26 cathode high voltage at 12 kV
    *Xsc1: X-ray streak camera 1
    下载: 导出CSV

    表  2  双板电极扫描管X射线条纹相机技术指标

    Table  2.   Performance of X-ray streak camera based on bilamellar electron-optical steak tube

    calibration testXsc2* for LFRC(bilamellar electron-optical system)notes
    temporal resolution0.35% of full screen streak time1 mm slit width before cathode
    spatial resolution/(lp·mm−130 @10%CTFin the center of the cathode
    dynamic range(5 ns sweep)~200∶1variation of 20% of the measured temporal FWHM
    effective cathode length/mm2210 lp/mm@10%CTF at the edge of the cathode
    magnification1.62cathode high voltage at 12 kV
    *Xsc2: X-ray streak camera 2
    下载: 导出CSV
  • [1] Wang Feng, Jiang Shaoen, Ding Yongkun, et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 4: 035201.
    [2] Sibbett W, Niu H B, Baggs M R. Photochron Ⅳ subpicosecond streak image tube[J]. Rev Sci Instrum, 1982, 53(6): 758-761. doi: 10.1063/1.1137058
    [3] Niu Lihong, Yang Qinlao, Niu Hanben, et al. A wide dynamic range X-ray streak camera system[J]. Rev Sci Instrum, 2008, 79: 023103. doi: 10.1063/1.2839025
    [4] Opachich Y P, Kalantar D H, MacPhee A G, et al. High performance imaging streak camera for the National Ignition Facility[J]. Rev Sci Instrum, 2012, 83: 125105. doi: 10.1063/1.4769753
    [5] Zuber C, Bazzoli S, Brunel P, et al. Performance of Laser Megajoule’s X-ray streak camera[J]. Rev Sci Instrum, 2016, 87: 11E303. doi: 10.1063/1.4959165
    [6] MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, et al. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak camera[J]. Rev Sci Instrum, 2016, 87: 11E202. doi: 10.1063/1.4960376
    [7] Mens A, Dalmasso J M, Sauneuf R, et al. C 850X picosecond high resolution streak camera[C]//Proc of SPIE. 1991, 1358: 316-328.
    [8] Jaanimagi P A, Mens A, Rebuffie J C, et al. Photoelectron throughput in streak tubes[C]// Proc of SPIE. 1995, 2549: 62-70.
    [9] Bonté C, Harmand M, Dorchies F, et al. High dynamic range streak camera for subpicosecond time-resolved X-ray spectroscopy[J]. Rev Sci Instrum, 2007, 78: 043503. doi: 10.1063/1.2720718
    [10] Opachich Y P, Palmer N, Homoelle D, et al. X-ray streak camera cathode development and timing accuracy of the 4ω ultraviolet fiducial system at the National Ignition Facility[J]. Rev Sci Instrum, 2012, 83: 10E123. doi: 10.1063/1.4732855
    [11] Hatch B, Palmer N, Ayers S, et al. Performance and operational upgrades of X-ray streak camera photocathode assemblies at NIF[C]//Proc of SPIE. 2014: 92110H.
    [12] Kimbrough J R, Bella P M, Datte P S, et al. Characterization of a megapixel CMOS charge dump and read camera[C]//Proc of SPIE. 2013: 88500A.
    [13] Carpenter A C, Dayton M, Kimbrough J, et al. Single line of sight CMOS radiation tolerant camera system design overview[C]//Proc of SPIE. 2016: 99660H.
    [14] Nagel S R, Carpenter A C, Park J, et al. The dilation aided single-line-of-sight X-ray camera for the National Ignition Facility: Characterization and fielding[J]. Rev Sci Instrum, 2018, 89: 10G125. doi: 10.1063/1.5038671
    [15] Datte P, James G, Celliers P, et al. Gated photocathode design for the P510 electron tube used in the National Ignition Facility (NIF) optical streak cameras[C] //Proc of SPIE. 2015: 95910D.
    [16] Beck T, Zuber C, Aubert D, et al. Recent advances in the development of X-ray cameras inserted inside a pressurized box for LMJ plasma diagnostics[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2867-2872. doi: 10.1109/TPS.2010.2058868
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  1614
  • HTML全文浏览量:  357
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-10
  • 修回日期:  2020-07-04
  • 刊出日期:  2020-09-13

目录

    /

    返回文章
    返回