留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金纳米笼的1106 nm被动调Q Nd: GAGG激光器

张斌 李颖 刘丙海

张斌, 李颖, 刘丙海. 基于金纳米笼的1106 nm被动调Q Nd: GAGG激光器[J]. 强激光与粒子束, 2020, 32: 101002. doi: 10.11884/HPLPB202032.200127
引用本文: 张斌, 李颖, 刘丙海. 基于金纳米笼的1106 nm被动调Q Nd: GAGG激光器[J]. 强激光与粒子束, 2020, 32: 101002. doi: 10.11884/HPLPB202032.200127
Zhang Bin, Li Ying, Liu Binghai. 1106 nm Q-switched Nd:GAGG laser using gold nanocages as saturable absorbers[J]. High Power Laser and Particle Beams, 2020, 32: 101002. doi: 10.11884/HPLPB202032.200127
Citation: Zhang Bin, Li Ying, Liu Binghai. 1106 nm Q-switched Nd:GAGG laser using gold nanocages as saturable absorbers[J]. High Power Laser and Particle Beams, 2020, 32: 101002. doi: 10.11884/HPLPB202032.200127

基于金纳米笼的1106 nm被动调Q Nd: GAGG激光器

doi: 10.11884/HPLPB202032.200127
基金项目: 山东省自然科学基金项目(ZR2019MF043)
详细信息
    作者简介:

    张 斌(1993—),男,博士研究生,主要从事调Q和锁模固体激光器及固体拉曼激光器的研究;bin-zhang@mail.sdu.edu.cn

  • 中图分类号: TN248.1

1106 nm Q-switched Nd:GAGG laser using gold nanocages as saturable absorbers

  • 摘要: 成功制备了金纳米笼溶液并将其作为饱和吸收体,实现了中心波长为1106 nm的Nd:GAGG激光器的调Q运转。在输出镜透过率为3%的激光器中,在泵浦功率6.70 W下获得的最大平均输出功率为98 mW,此时对应的脉冲重复率为206 kHz,最短脉冲宽度为436 ns;在输出镜透过率为7%的激光器中,当泵浦功率为7.69 W时,得到的最大平均输出功率为121 mW,最短脉冲宽度为370 ns,对应的脉冲重复率为170 kHz。实验结果证明了金纳米笼在近红外波段激光器中用作饱和吸收体的巨大潜力。
  • 图  1  金纳米笼的实验表征

    Figure  1.  Experimental characterization of the GNCs

    图  2  金纳米笼的非线性光学特性

    Figure  2.  Nonlinear optical properties of the as-prepared GNCs SA

    图  3  金纳米笼为饱和吸收体的Nd:GAGG被动调Q激光器实验装置图

    Figure  3.  Schematic of diode-pumped GNCs-SA Q-switched Nd:GAGG laser

    图  4  Nd:GAGG激光器输出功率与泵浦功率的关系曲线

    Figure  4.  Output power characteristics versus pump power of the Nd:GAGG lasers

    图  5  脉冲宽度和重复频率随泵浦功率的变化关系

    Figure  5.  Change of pulse repetition rate and pulse width with pump power

    图  6  Nd:GAGG被动调Q激光器的单脉冲波形和脉冲序列

    Figure  6.  Single pulse profiles and pulse trains of GNCs Q-switched Nd:GAGG lasers

    表  1  用GNRs和GNCs作为SA的1106 nm被动调Q激光器

    Table  1.   Property of the passively Q-switched laser at 1106 nm using GNCs and GNRs as saturable absorbers

    type of GNPsmodulation depth/%saturation power density/(mW/cm2maximum output power/mWshortest pulse width/nsrepetition rate/kHzreferences
    GNRs90.022101481100Feng Chao et al, 2017
    GNCs5.31.1121370206This work
    下载: 导出CSV
  • [1] Chen Y F, Lan Y P, Tsai S W. High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm[J]. Optics Communications, 2004, 234(1): 309-313.
    [2] Booth I J, Archambault J L, Ventrudo B F. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers[J]. Optics Letters, 1996, 21(5): 348-350. doi: 10.1364/OL.21.000348
    [3] Wang Zhichao, Peng Qinjun, Bo Yong, et al. Yellow-green 52.3 W laser at 556 nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser[J]. Applied Optics, 2010, 49(18): 3465-3469. doi: 10.1364/AO.49.003465
    [4] Jia Z T, Zhang B T, Li Y B, et al. Continuous-wave and passively Q-switched laser of Nd:LGGG crystal at 0.93 μm[J]. Laser Physics Letters, 2011, 9(1): 20-25.
    [5] Kuwano Y, Saito S, Hase U. Crystal growth and optical properties of Nd:GGAG[J]. Journal of crystal growth, 1988, 92(1/2): 17-22.
    [6] Zhang J, Tao X T, Dong C M, et al. Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals[J]. Laser Physics Letters, 2008, 6(5): 355-358.
    [7] Feng Chao, Liu Mingyi, Li Yanbin, et al. Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm[J]. Applied Physics B-Lasers and Optics, 2017, 123(3): 81. doi: 10.1007/s00340-017-6666-2
    [8] Li Yanbin, Feng Chao, Jia Zhitai, et al. Crystal growth, spectra and passively Q-switched laser at 1106 nm of Nd:Gd3AlGa4O12 crystal[J]. Journal of Alloys and Compounds, 2020, 814: 152248. doi: 10.1016/j.jallcom.2019.152248
    [9] Li Xianlei, Xu Jinlong, Wu Yongzhong, et al. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Optics Express, 2011, 19(10): 9950-9955. doi: 10.1364/OE.19.009950
    [10] Koechner W. Solid-state laser engineering[M]. 6th ed. New York: Springer, 2006: 488-533.
    [11] Fluck R, Braun B, Gini E, et al. Passively Q-switched 1.34 μm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors[J]. Optics Letters, 1997, 22(13): 991-993. doi: 10.1364/OL.22.000991
    [12] Set S Y, Yaguchi H, Tanaka Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 2004, 22(1): 51-56. doi: 10.1109/JLT.2003.822205
    [13] Zhang Huahian, Li Ming, Chen Xiaohan, et al. Graphene based passively Q-switched Nd:YAG eye-safe laser[J]. Chinese Physics Letters, 2014, 31: 074201. doi: 10.1088/0256-307X/31/7/074201
    [14] Lou Fei, Zhao Ruwei, He Jingliang, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): 25-29. doi: 10.1364/PRJ.3.000A25
    [15] Liu X, Yang K, Zhao S, et al. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber[J]. Photonics Research, 2017, 5(5): 461-466. doi: 10.1364/PRJ.5.000461
    [16] Zhang Haikun, He Jingliang, Wang Zhaowei, et al. Dual-wavelength, passively Q-switched Tm: YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7): 2328-2335. doi: 10.1364/OME.6.002328
    [17] Zhang Huanian, Liu Jie. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region[J]. Optics Letters, 2016, 41(6): 1150-1152. doi: 10.1364/OL.41.001150
    [18] Bai Jinxi, Li Ping, Chen Xiaohan, et al. Diode-pumped passively Q-switched Nd:YAG ceramic laser with a gold nanotriangles saturable absorber at 1 µm[J]. Applied Physics Express, 2017, 10: 082701. doi: 10.7567/APEX.10.082701
    [19] Scarabelli L, Coronado M, Giner J J, et al. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering[J]. ACS Nano, 2014, 8(6): 5833-5842. doi: 10.1021/nn500727w
    [20] Chen J Y, Wiley B, Li Z Y, et al. Gold nanocages: Engineering their structure for biomedical applications[J]. Advanced Materials, 2005, 17(18): 2255-2261. doi: 10.1002/adma.200500833
    [21] Skrabalak S E, Chen Jingyi, Au L, et al. Gold nanocages for biomedical applications[J]. Advanced Materials, 2007, 19(20): 3177-3184. doi: 10.1002/adma.200701972
    [22] Wang H, Brandl D W, Nordlander P, et al. Plasmonic nanostructures: Artificial molecules[J]. Accounts of Chemical Research, 2007, 40(1): 53-62. doi: 10.1021/ar0401045
    [23] Wang Lili, Chen Xiaohan, Bau Jinxi, et al. Au nanocages/SiO2 as saturable absorbers for passively Q-switched all-solid-state laser[J]. Materials Research Express, 2018, 5: 045043. doi: 10.1088/2053-1591/aabe11
    [24] Skrabalak S E, Chen Jingyi, Sun Yugang, et al. Gold nanocages: Synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595. doi: 10.1021/ar800018v
    [25] Sheik B M, Said A A, Stryland E W V. High-sensitivity, single-beam n2 measurements[J]. Optics Letters, 1989, 14(17): 955-957. doi: 10.1364/OL.14.000955
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  338
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-17
  • 修回日期:  2020-08-04
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回