1106 nm Q-switched Nd:GAGG laser using gold nanocages as saturable absorbers
-
摘要: 成功制备了金纳米笼溶液并将其作为饱和吸收体,实现了中心波长为1106 nm的Nd:GAGG激光器的调Q运转。在输出镜透过率为3%的激光器中,在泵浦功率6.70 W下获得的最大平均输出功率为98 mW,此时对应的脉冲重复率为206 kHz,最短脉冲宽度为436 ns;在输出镜透过率为7%的激光器中,当泵浦功率为7.69 W时,得到的最大平均输出功率为121 mW,最短脉冲宽度为370 ns,对应的脉冲重复率为170 kHz。实验结果证明了金纳米笼在近红外波段激光器中用作饱和吸收体的巨大潜力。
-
关键词:
- 金纳米笼 /
- 饱和吸收体 /
- 被动调Q /
- 1106 nm /
- Nd:GAGG激光器
Abstract: Using gold nanocages (GNCs) as saturable absorbers (SAs), passively Q-switched Nd:GAGG lasers at 1106 nm were demonstrated. For the laser at T = 3%, the maximum output power of 98 mW was received under the pump power of 6.70 W, with the shortest pulse width of 436 ns and the pulse repetition rate of 206 kHz. Q-switched pulse with the shortest pulse duration of 370 ns, pulse repetition rate of 170 kHz was achieved at transmittance T=7% under the pump power of 7.69 W with the maximum average output power of 121 mW. These results indicate a great potential of the GNCs as SA in the near-infrared lasers.-
Key words:
- gold nanocages /
- saturable absorber /
- passively Q-switched /
- 1106 nm /
- Nd:GAGG laser
-
表 1 用GNRs和GNCs作为SA的1106 nm被动调Q激光器
Table 1. Property of the passively Q-switched laser at 1106 nm using GNCs and GNRs as saturable absorbers
type of GNPs modulation depth/% saturation power density/(mW/cm2) maximum output power/mW shortest pulse width/ns repetition rate/kHz references GNRs 9 0.022 101 481 100 Feng Chao et al, 2017 GNCs 5.3 1.1 121 370 206 This work -
[1] Chen Y F, Lan Y P, Tsai S W. High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm[J]. Optics Communications, 2004, 234(1): 309-313. [2] Booth I J, Archambault J L, Ventrudo B F. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers[J]. Optics Letters, 1996, 21(5): 348-350. doi: 10.1364/OL.21.000348 [3] Wang Zhichao, Peng Qinjun, Bo Yong, et al. Yellow-green 52.3 W laser at 556 nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser[J]. Applied Optics, 2010, 49(18): 3465-3469. doi: 10.1364/AO.49.003465 [4] Jia Z T, Zhang B T, Li Y B, et al. Continuous-wave and passively Q-switched laser of Nd:LGGG crystal at 0.93 μm[J]. Laser Physics Letters, 2011, 9(1): 20-25. [5] Kuwano Y, Saito S, Hase U. Crystal growth and optical properties of Nd:GGAG[J]. Journal of crystal growth, 1988, 92(1/2): 17-22. [6] Zhang J, Tao X T, Dong C M, et al. Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals[J]. Laser Physics Letters, 2008, 6(5): 355-358. [7] Feng Chao, Liu Mingyi, Li Yanbin, et al. Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm[J]. Applied Physics B-Lasers and Optics, 2017, 123(3): 81. doi: 10.1007/s00340-017-6666-2 [8] Li Yanbin, Feng Chao, Jia Zhitai, et al. Crystal growth, spectra and passively Q-switched laser at 1106 nm of Nd:Gd3AlGa4O12 crystal[J]. Journal of Alloys and Compounds, 2020, 814: 152248. doi: 10.1016/j.jallcom.2019.152248 [9] Li Xianlei, Xu Jinlong, Wu Yongzhong, et al. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Optics Express, 2011, 19(10): 9950-9955. doi: 10.1364/OE.19.009950 [10] Koechner W. Solid-state laser engineering[M]. 6th ed. New York: Springer, 2006: 488-533. [11] Fluck R, Braun B, Gini E, et al. Passively Q-switched 1.34 μm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors[J]. Optics Letters, 1997, 22(13): 991-993. doi: 10.1364/OL.22.000991 [12] Set S Y, Yaguchi H, Tanaka Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 2004, 22(1): 51-56. doi: 10.1109/JLT.2003.822205 [13] Zhang Huahian, Li Ming, Chen Xiaohan, et al. Graphene based passively Q-switched Nd:YAG eye-safe laser[J]. Chinese Physics Letters, 2014, 31: 074201. doi: 10.1088/0256-307X/31/7/074201 [14] Lou Fei, Zhao Ruwei, He Jingliang, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): 25-29. doi: 10.1364/PRJ.3.000A25 [15] Liu X, Yang K, Zhao S, et al. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber[J]. Photonics Research, 2017, 5(5): 461-466. doi: 10.1364/PRJ.5.000461 [16] Zhang Haikun, He Jingliang, Wang Zhaowei, et al. Dual-wavelength, passively Q-switched Tm: YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7): 2328-2335. doi: 10.1364/OME.6.002328 [17] Zhang Huanian, Liu Jie. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region[J]. Optics Letters, 2016, 41(6): 1150-1152. doi: 10.1364/OL.41.001150 [18] Bai Jinxi, Li Ping, Chen Xiaohan, et al. Diode-pumped passively Q-switched Nd:YAG ceramic laser with a gold nanotriangles saturable absorber at 1 µm[J]. Applied Physics Express, 2017, 10: 082701. doi: 10.7567/APEX.10.082701 [19] Scarabelli L, Coronado M, Giner J J, et al. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering[J]. ACS Nano, 2014, 8(6): 5833-5842. doi: 10.1021/nn500727w [20] Chen J Y, Wiley B, Li Z Y, et al. Gold nanocages: Engineering their structure for biomedical applications[J]. Advanced Materials, 2005, 17(18): 2255-2261. doi: 10.1002/adma.200500833 [21] Skrabalak S E, Chen Jingyi, Au L, et al. Gold nanocages for biomedical applications[J]. Advanced Materials, 2007, 19(20): 3177-3184. doi: 10.1002/adma.200701972 [22] Wang H, Brandl D W, Nordlander P, et al. Plasmonic nanostructures: Artificial molecules[J]. Accounts of Chemical Research, 2007, 40(1): 53-62. doi: 10.1021/ar0401045 [23] Wang Lili, Chen Xiaohan, Bau Jinxi, et al. Au nanocages/SiO2 as saturable absorbers for passively Q-switched all-solid-state laser[J]. Materials Research Express, 2018, 5: 045043. doi: 10.1088/2053-1591/aabe11 [24] Skrabalak S E, Chen Jingyi, Sun Yugang, et al. Gold nanocages: Synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595. doi: 10.1021/ar800018v [25] Sheik B M, Said A A, Stryland E W V. High-sensitivity, single-beam n2 measurements[J]. Optics Letters, 1989, 14(17): 955-957. doi: 10.1364/OL.14.000955