留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效紧凑室温Yb:YAG板条全固态激光技术研究

高清松 周唐建 尚建力 汪丹 李密 邬映臣 王君涛 王亚楠 徐浏 杜应磊 陈小明 张凯 唐淳

高清松, 周唐建, 尚建力, 等. 高效紧凑室温Yb:YAG板条全固态激光技术研究[J]. 强激光与粒子束, 2020, 32: 121009. doi: 10.11884/HPLPB202032.200185
引用本文: 高清松, 周唐建, 尚建力, 等. 高效紧凑室温Yb:YAG板条全固态激光技术研究[J]. 强激光与粒子束, 2020, 32: 121009. doi: 10.11884/HPLPB202032.200185
Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb:YAG slab all-solid-state laser at room temperature[J]. High Power Laser and Particle Beams, 2020, 32: 121009. doi: 10.11884/HPLPB202032.200185
Citation: Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb:YAG slab all-solid-state laser at room temperature[J]. High Power Laser and Particle Beams, 2020, 32: 121009. doi: 10.11884/HPLPB202032.200185

高效紧凑室温Yb:YAG板条全固态激光技术研究

doi: 10.11884/HPLPB202032.200185
基金项目: 国家自然科学基金项目(61705209)
详细信息
    作者简介:

    高清松(1972—),男,硕士生导师,研究员,从事高功率全固态激光技术研究;15883798199@163.com

  • 中图分类号: TN248.1

High efficiency and compact Yb:YAG slab all-solid-state laser at room temperature

  • 摘要: 报道了高效紧凑室温Yb:YAG板条全固态激光研究进展。建立了室温Yb板条激光动力学模型,分析了泵浦激光通量和注入激光亮度与光光效率的关系,以及板条边缘效应抑制方法。实验获得了输出功率22.3 kW、光光效率36%和光束质量优于2.4倍衍射极限的激光输出,为更高功率的Yb板条激光关键技术研究及开发小型化、轻量化、实用化的高功率激光器奠定了基础。
  • 图  1  300 K时Yb:YAG能级结构

    Figure  1.  Yb:YAG energy level structure at 300 K

    图  2  300 K时Yb:YAG的吸收光谱和受激发射光谱

    Figure  2.  Absorption spectra and stimulated emission spectra of Yb:YAG at 300 K

    图  3  板条增益模块波前畸变

    Figure  3.  Wavefront distortion of slab gain module

    图  4  反射式4f像传递光路

    Figure  4.  Optical path of reflective 4f image system

    图  5  激光放大链路静态像差测试结果

    Figure  5.  Static aberration test results

    图  6  板条端面及棱边表面质量对比图

    Figure  6.  Contrast diagram of slab surface quality

    图  7  Yb:YAG板条激光MOPA放大链路

    Figure  7.  Schematic diagram of a Yb:YAG slab MOPA amplifier chain

    图  8  单个板条增益模块提取功率与泵浦功率关系(小图中为实验条件下的光光效率)

    Figure  8.  Relationship between the pumped power and extracted power from the single gain module

    图  9  Yb板条激光远场强度分布

    Figure  9.  Far-field intensity distribution of Yb slab laser at the room temperature

  • [1] 高清松, 童立新, 李德明, 等. 二极管泵浦Nd:YAG棒双通放大器技术[J]. 强激光与粒子束, 2005, 17(4):26-28. (Gao Qingsong, Tong Lixin, Li Deming, et al. Diode pumped Nd:YAG rod dual-pass amplifier technology[J]. High Power Laser and Particle Beams, 2005, 17(4): 26-28
    [2] Goodno G D, Palese S, Harkenrider J, et al. Yb:YAG power oscillator with high brightness and linear polarization[J]. Optics Letters, 2001, 26(21): 1672-1674.
    [3] 柳强, 巩马理, 陆富源, 等. 高功率二极管角抽运Yb:YAG板条激光器[J]. 激光与光电子学进展, 2005, 42(12):13. (Liu Qiang, Gong Mali, Lu Fuyuan, et al. High power diode corner pumped Yb:YAG slab lasers[J]. Laser & Optoelectronics Progress, 2005, 42(12): 13
    [4] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proc of SPIE. 2009: 7195071.
    [5] Chen Xiaoming, Xu Liu, Hu Hao, et al. High efficiency, high-average-power, CW Yb:YAG zigzag slab MOPA at room temperature[J]. Optics Express, 2016, 24(21): 24517-24523.
    [6] Li Mi, Hu Hao, Wang Juntao, et al. A 7.08-kW YAG/Nd:YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9(4): 1503010.
    [7] Xu Liu, Wu Yingchen, Du Yinglei, et al. High brightness laser based on Yb:YAG MOPA chain and adaptive optics system at room temperature[J]. Optics Express, 2018, 26(11): 14592-14600.
    [8] Bruesselbach H W, Sumida D S, Reeder R A, et al. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers[J]. IEEE J Sel Top Quantum Electron, 1997, 3(1): 105-115.
    [9] 於海武, 段文涛, 徐美健, 等. Yb激光材料综述[J]. 激光与光电子学进展, 2007, 44(5):30-41. (Yu Haiwu, Duan Wentao, Xu Meijian, et al. Overview of Yb Laser materials[J]. Laser & Optoelectronics Progress, 2007, 44(5): 30-41
    [10] Casagrande O, Robin N D, Garrec B L, et al. Time and spectrum resolved model for quasi-three-level gain-switched lasers[J]. IEEE Journal of Quantum Electronics, 2007, 43(2): 206-212.
    [11] Fan T Y, Ripin D J, Roshan L, et al. Cryogenic Yb3+ doped solid state lasers[J]. IEEE J Sel Top Quantum Electron, 2007, 13(3): 448-459.
    [12] Ganija M, Ottaway D J, Veitch P J, et al. Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling[C]//Conference on Lasers and Electro-Optics (CLEO). 2012.
    [13] 吴明武, 吴慧云, 许晓军, 等. 低温冷却高平均功率Yb:YAG激光器[J]. 激光与光电子学进展, 2010, 47:071403. (Wu Mingwu, Wu Huiyun, Xu Xiaojun, et al. Low temperature cooling high average power Yb:YAG laser[J]. Laser & Optoelectronics Progress, 2010, 47: 071403
    [14] 张振华, 陈小劲, 王建磊, 等. 基于无水乙醇冷却的Yb:YAG片状晶体激光放大特性研究[J]. 中国激光, 2011, 38:0702013. (Zhang Zhenhua, Chen Xiaojin, Wang Jianlei, et al. Laser amplification characteristics of Yb:YAG flake crystals based on anhydrous ethanol cooling[J]. Chinese Journal of Lasers, 2011, 38: 0702013
  • 加载中
图(9)
计量
  • 文章访问数:  1740
  • HTML全文浏览量:  545
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-09-22
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回