Design of Q-band wideband linearizer
-
摘要: 当前我国Q/V频段的低轨卫星互联网项目正在大力开展,宽带通信正在逐步发展。而国内相关线性化技术一般局限于较窄频带,相关研究尚不成熟。因此尽快研究设计宽频带线性化器十分有必要。采用适用于空间环境的模拟预失真技术,设计出针对卫星通信所用的行波管功率放大器(TWTA)的Q波段线性化器。其利用新型微带传输结构,结合肖特基二极管,可在毫米波频段实现超宽瞬时频带的线性化。在38~43 GHz(5 GHz)的瞬时频带内对TWTA的幅度失真以及相位失真有着很好的改善。线性化器在输入功率为−17~13 dBm的范围内,频带内幅度增益约为4.8~7.2 dB,相位扩张约为70°~88°。相对其他同类型线性化器,此线性化器对应频率较高,且可在很宽的瞬时频带内对TWTA实现比较稳定的线性化。Abstract: At present, China’s Q/V band low orbit satellite internet project is being vigorously carried out, broadband communications are gradually developing. But the domestic linearization technology is generally limited to narrow band, the related research is not mature. Therefore, it is necessary to design broadband linearizer as soon as possible. In this paper, a Q-band linearizer of traveling-wave tube amplifier (TWTA) for satellite communication has been designed using an analog predistortion technique suitable for space environment. Using the new microstrip transmission structure and the Schottky diode, the ultra-wide instantaneous frequency band can be linearized in the millimeter-wave frequency band. The amplitude distortion and phase distortion of TWTA are greatly improved in the 38−43 GHz (5 GHz) instantaneous frequency band. The linearizer has an in-band amplitude gain of about 4.8−7.2 dB and a phase expansion of about 70°−88° in the input power range of −17−13 dBm. Compared with other linearizers of the same type, this linearizer has higher corresponding frequency and can realize stable linearization of TWTA in a wide instantaneous frequency band.
-
表 1 两电桥传输性能对比
Table 1. Comparison of transmission performance between the two bridges
type of coupler S(3,1), S(4,1)/dB S(1,1)/dB S(2,1)/dB S(3,4)/dB three branch bridge −3.15~−3.23 under −25.6 −16.0~−17.0 under −24.9 two branch bridge −2.98~−3.70 under −19.2 −13.6~−15.6 under −18.8 -
[1] 蒋超. 空间行波管用线性化器设计[D]. 成都: 电子科技大学, 2010.Jiang Chao. Design of linearizer for space TWTA[D]. Chengdu: University of Electronic Science and Technology, 2010 [2] 李晨飞. 毫米波功率放大器的线性化技术[D]. 成都: 电子科技大学, 2011.Li Chenfei. Linearization technology of millimeter wave power amplifier[D]. Chengdu: University of Electronic Science and Technology, 2011 [3] Zhang W M, Yuen C. A broadband linearizer for Ka-band satellite communication[C]//IEEE International Microwave Symposium Digest. 1998, 3: 1203-1206. [4] Villemazet J F, Yahi H, Azzara J C, et al. New analog predistortion linearizer for Ku-band TWTA allowing 1 GHz instantaneous wide-band satellite operation[R]. AIAA 2013-5672. [5] 张旭阳. 毫米波预失真技术研究[D]. 成都: 电子科技大学, 2014: 41-76.Zhang Xuyang. Research on millimeter wave predistortion technology[D]. Chengdu: University of Electronic Science and Technology, 2014: 41-76 [6] Bera S C, Singh R V, Garg V K. Diode-based predistortion lineariser for power amplifiers[J]. Electronics Letters, 2008, 44(2): 125-126. doi: 10.1049/el:20082436 [7] Katz A, Gray R, Dorval R. Linear power and efficiency at microwave and millimeter-wave using TWTA based microwave power modules[J]. IEEE Microwave Magazine, 2009, 10(7): 78-89. doi: 10.1109/MMM.2009.934500 [8] Deng J, Gudem P S, Larson L E, et al. A SiGe PA with dual dynamic bias control and memoryless digital predistortion for WCDMA handset applications[J]. IEEE Journal of Solid-State Circuits, 2006, 41(5): 1210-1221. doi: 10.1109/JSSC.2006.872735 [9] Presti C D, Carrara F, Scuderi A, et al. A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control[J]. IEEE Journal of Solid-State Circuits, 2009, 44(7): 1883-1896. doi: 10.1109/JSSC.2009.2020226 [10] Morgan D R, Ma Z, Kim J, et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers[J]. IEEE Trans Signal Processing,, 2006, 54(10): 3852-3860. doi: 10.1109/TSP.2006.879264 [11] Villemazet J F, Hissa Y, David L. High accuracy wide band analog predistortion linearizer for telecom satellite transmit section[C]//IEEE MTT-S International Microwave Symposium.2010. [12] 李征帆. 微带电路[M]. 北京: 清华大学出版社, 2017: 179-191.Li Zhengfan. Microstrip circuit[M]. Beijing: Tsinghua University Press, 2017: 179-191 [13] 黄鹂, 黄永茂, 李良荣, 等. 基于缺陷地结构的微带低通滤波器设计[J]. 强激光与粒子束, 2018, 30:123003. (Huang Li, Huang Yongmao, Li Liangrong, et al. Design of microstrip low pass filter based on defected ground structure[J]. High Power Laser and Particle Beams, 2018, 30: 123003 doi: 10.11884/HPLPB201830.180235 [14] 刘高飞, 陈夏寅, 彭菊红, 等. 一种基于缺陷地结构的微带滤波器的优化设计[J]. 信息通信, 2020(5):57-59. (Liu Gaofei, Chen Xiayin, Peng Juhong, et al. Optimization design of microstrip filter based on defected ground structure[J]. Information Communication, 2020(5): 57-59 doi: 10.3969/j.issn.1673-1131.2020.05.022 [15] 杨宇斌. 带短路支节的高隔离度分支线定向耦合器设计研究[D]. 南京: 南京邮电大学. 2015.YangYubin. Design and research on high isolation branch line directional coupler with short circuit branch. Nanjing: Nanjing University of Posts and Telecommunications, 2015