Cross section measurement of neutron capture reaction based on HI-13 tandem accelerator
-
摘要: 利用BaF2晶体对γ射线探测效率高、时间分辨率好的特点,研制了国内首套由40个BaF2探测器单元组成的γ全吸收型探测装置,用于在线测量中子俘获反应截面。在HI-13串列加速器上建立250~850 keV的中子源,其0°角的源强约为5.09×106 n/(Sr·s),使用γ全吸收型探测装置,通过瞬发γ射线法测量了93Nb、197Au、natC和空样品的实验数据。根据BaF2探测器信号的特征,采用了基线补偿、软件阈值设置、时间窗限定、脉冲幅度积分增长率设置和快慢成分比设置等多种数字化波形分析方法,剔除噪声信号以提高效应本底比。以197Au样品数据为标准,natC样品数据为样品相关性本底,空样品数据为样品无关性本底,采用相对测量法得到了93Nb的中子俘获反应截面实验数据。通过与ENDF评价库数据的比较,验证了测量装置和技术方法的可行性。Abstract: The first gamma-ray total absorption facility composed of 40 BaF2 detector units has been constructed in China. Utilizing the property of high detection efficiency and good time resolution for gamma rays of BaF2 crystal, the facility will be used to measure on-line the cross section of neutron capture reaction. Neutron source of 250 keV~850 keV was set up on the HI-13 tandem accelerator, its source intensity at 0° was about 5.09 × 106 n/(Sr·s). The experimental data of 93Nb, 197Au, natC and empty samples were measured by the prompt gamma ray method with gamma-ray total absorption facility. According to the characteristics of BaF2 detector signal, a variety of digital waveform analysis methods were adopted to eliminate noise signal as much as possible to improve the effect background ratio, such as baseline compensation, software threshold setting, time window limitation, pulse amplitude integral growth rate setting and fast slow component ratio setting. The experimental data of 93Nb neutron capture reaction cross section was obtained by relative measurement method. The data of 197Au sample was the standard, the data of natC sample was the sample correlation background, and the data of empty sample was the sample independence background. The feasibility of the measurement facility and technical method was verified by comparing with the data of ENDF evaluation library.
-
表 1 在线实验样品参数
Table 1. Sample parameter of on-line experiment
sample density/(g·cm−3) diameter/mm thickness/mm purity/% measure time/min 93Nb 8.57 20 1 99.99 573 197Au 19.32 20 1 99.99 664 natC 2.3 20 1.5 99.99 626 blank 288 表 2 在线实验测量结果
Table 2. Measurement results of on line experiment
energy bin/MeV cross section/mb energy resolution/% uncertainty/% 0.249·0.302 45.14 6.37 22.3 0.303·0.374 42.93 7.06 25.8 0.375·0.475 41.68 7.91 27.3 0.476·0.624 39.64 8.99 30.6 0.625·0.857 36.55 10.43 33.6 表 3 不确定度分析
Table 3. Analysis of uncertainties
source of
uncertaintiesstatistical uncertainty
of 93Nbstatistical uncertainty
of 197Austatistical uncertainty
of natCstatistical uncertainty
of blanknormalization of
beam integraluncertainty/% 10~15 7~10 10~15 7~10 3 source of uncertainties detection efficiency other backgrounds neutron energy standard cross section of 197Au total uncertainty/% 1 5 12.8~20.8 1~4 22.3~33.6 -
[1] Plag R, Heil M, Kappeler F, et al. An independent measurement of the 12C(α, γ)16O cross section with the Karlsruhe 4π BaF2 detector[J]. Nuclear Physics A, 2005, 758: 415-418. doi: 10.1016/j.nuclphysa.2005.05.076 [2] Guerrero C, Abbondanno U, Aerts G, et al. The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN[J]. Nuclear Instruments and Methods in Physics Research A, 2009, 608: 424-433. doi: 10.1016/j.nima.2009.07.025 [3] Reifarth R, Esch E I, Alpizar-Vicente A, et al. (n,γ) measurements on radioactive isotopes with DANCE[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 241: 176-179. doi: 10.1016/j.nimb.2005.07.022 [4] Colonna N, Abbondanno U, Aerts G, et al. Neutron cross-sections for next generation reactors: New data from n_TOF[J]. Applied Radiation and Isotopes, 2010, 68: 643-646. doi: 10.1016/j.apradiso.2010.01.003 [5] Belloni F, Calviani M, Colonna N, et al. Measurement of the neutron-induced fission crosssection of 241Am at the time-of-flight facility n_TOF[J]. European Physical Journal A, 2013, 49: 49-54. doi: 10.1140/epja/i2013-13049-0 [6] Jandel M, Bredeweg TA, Bond EM, et al. New precision measurements of the 235U(n,γ) cross section[J]. Physical Review Letters, 2012, 109: 202506. doi: 10.1103/PhysRevLett.109.202506 [7] Zhong Qiping, Zhou Zuying, Tang Hongqing, et al. New detector system to measure (n,γ) reaction cross section precisely in China[J]. Chinese Physics C, 2008, 32(S2): 102-105. [8] 马霄云, 仲启平, 周祖英, 等. 大体积氟化钡的性能测试[J]. 原子能科学技术, 2009, 43(2):180-184. (Ma Xiaoyun, Zhong Qiping, Zhou Zuying, et al. Performance test of large BaF2 detector[J]. Atomic Energy Science and Technology, 2009, 43(2): 180-184 [9] 黄兴, 贺国珠, 程品晶, 等. (n, γ)反应实验研究中的中子屏蔽设计[J]. 原子核物理评论, 2015, 32(2):208-211. (Huang Xing, He Guozhu, Chen Pingjing, et al. Neutron shielding design for experiment research of (n, γ) reaction[J]. Nuclear Physics Review, 2015, 32(2): 208-211 doi: 10.11804/NuclPhysRev.32.02.208 [10] 贺国珠. (n, γ)反应截面测量用4π BaF2闪烁体探测器研制[D]. 兰州: 兰州大学, 2006: 17-19.He Guozhu. The Development of a 4pi BaF2 Scintillator detector used for the measurement of (n, γ) reaction cross-sections[D]. Lanzhou: Lanzhou University, 2006: 17-19 [11] 苏明, 仲启平, 郑玉来, 等. γ全吸收型探测装置中子束流监视器的Geant4模拟[J]. 原子能科学技术, 2009, 43(10):949-950. (Su Ming, Zhong Qiping, Zheng Yulai, et al. Geant4 simulation of neutron beam monitor in gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2009, 43(10): 949-950 [12] 张奇玮, 贺国珠, 阮锡超, 等. 锂玻璃探测器中子探测效率的刻度[J]. 原子核物理评论, 2013, 30(2):99-103. (Zhang Qiwei, He Guozhu, Ruan Xichao, et al. Calibration of neutron detection efficiency of Li-glass detector[J]. Nuclear Physics Review, 2013, 30(2): 99-103 doi: 10.11804/NuclPhysRev.30.02.099 [13] 彭猛, 贺国珠, 骆宏, 等. 4πBaF2装置的触发系统研究[J]. 原子能科学技术, 2016, 50(10):1866-1870. (Peng Meng, He Guozhu, Luo Hong, et al. Study of trigger system for γ-ray total absorption BaF2 facility[J]. Atomic Energy Science and Technology, 2016, 50(10): 1866-1870 doi: 10.7538/yzk.2016.50.10.1866 [14] 赵健, 贺国珠, 颜拥军, 等. BaF2闪烁体探测器信号数字化方法研究[J]. 原子能科学技术, 2013, 47(4):669-673. (Zhao Jian, He Guozhu, Yan Yongjun, et al. Digital method on signals of BaF2 scintillator detector[J]. Atomic Energy Science and Technology, 2013, 47(4): 669-673 doi: 10.7538/yzk.2013.47.04.0669 [15] 张奇玮, 贺国珠, 黄兴, 等. 基于Gamma全吸收型BaF2探测装置的数据获取系统[J]. 原子能科学技术, 2016, 50(3):536-540. (Zhang Qiwei, He Guozhu, Huang Xing, et al. Data acquisition system based on gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2016, 50(3): 536-540 doi: 10.7538/yzk.2016.50.03.0536 [16] Amorini F, Filippo E D, Guazzoni P, et al. Digital pulse shape acquisition from BaF2: Preliminary results[J]. 2006 IEEE Nuclear Science Symposium Conference Record, 2006: 440-443. [17] Nelson M A, Rooney B D, Dinwiddie D R, et al. Analysis of digital timing methods with BaF2 scintillators[J]. Nuclear Instruments and Methods in Physics Research A, 2003, 505: 324-327. doi: 10.1016/S0168-9002(03)01078-7 [18] 张奇玮, 贺国珠, 黄兴, 等. 基于Gamma全吸收型BaF2探测装置的波形分析和定时方法研究[J]. 原子能科学技术, 2014, 48(S1):70-75. (Zhang Qiwei, He Guozhu, Huang Xing, et al. Study of waveform analysis and timing method for gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2014, 48(S1): 70-75 [19] 石斌, 彭猛, 张奇玮, 等. 中子俘获反应截面在线测量技术研究[J]. 原子能科学技术, 2018, 52(9):1537-1544. (Shi Bing, Peng Meng, Zhang Qiwei, et al. Online method for neutron capture reaction cross-section measurement[J]. Atomic Energy Science and Technology, 2018, 52(9): 1537-1544 doi: 10.7538/yzk.2017.youxian.0817 [20] https://www-nds.iaea.org/exfor/endf.htm [21] Poenitz W P. Fast neutron capture and activation cross sections of niobium isotopes[R]. Argonne National Laboratory Reports, 1974, 8. [22] Mu Yunshan, Xu Haishan, Xiang Zhengyu, et al. Fast neutron radiative capture cross sections of natural niobium and molybdenum[J]. Nuclear Science and Engineering, 1991, 108(3): 302-311. [23] Stavisskii Y Y, Tolstikov V A. Fast neutron radiative capture cross sections of V-51 Nb-93 W-186 and Tl-205[J]. Atomnaya Energiya, 1960, 9(5): 401-409. [24] Stavisskij J J, Shapar A V. Fast neutron capture cross section for Niobium Nickel and Iron[J]. Atomnaya Energiya, 1961, 10(3): 264-271. [25] Chen Yonghao, Luan Guangyuan, BaoJie, et al. Neutron energy spectrum measurement of the Back-n white neutron source at CSNS[J]. European Physical Journal A, 2019, 55: 115-124. doi: 10.1140/epja/i2019-12808-1