Simulation of radiation field from isotopic gamma source collimation
-
摘要: 针对各向同性伽玛源参考辐射场尺寸关键技术问题,GB/T 12162系列标准虽然进行了相关规定,但是该规定并未对准直照射状态下照射室尺寸提出具体要求。为减小用于辐射检测或监测类仪器仪表检定与量值校准时伽玛参考辐射场内散射影响,本文采用蒙特卡罗方法,研究了同位素放射源准直照射时,照射室尺寸变化对检验点处的剂量率值与能量分布的影响情况,获得了准直照射时伽玛辐射场照射室尺寸的边界条件,建立并完善了伽玛参考辐射场边界研究方法及相关标准细节,为准直照射状态下照射室尺寸设计提供了一种新方法或途径。Abstract: Aiming at the key technical issues of the reference radiation field size of isotropic sources, GB/T 12162 series of GB standards stipulates the size of the reference radiation field when using an isotropic source. However, there is no specific regulation for the size of the irradiation under collimation. To reduce the influence of scattering in the gamma reference radiation field when used for radiation detection or monitoring instrument verification and value calibration, Monte Carlo simulation was carried out to explore the effect of the size change of the irradiation chamber on the energy distribution and dose rate value during the radiation source collimation. The boundary conditions of the collimated gamma radiation irradiation chamber were obtained, and the details of the gamma reference radiation field boundary research method and related standards are established and improved. The study provides a new method or approach for the size design of the irradiation chamber under the collimated irradiation state.
-
表 1 放射性核素的比活度及推荐的化学形态
Table 1. Specific activity and recommended chemical form of radionuclides
radionuclide specific activity/(Bq·kg−1) recommended chemical form 60Co 0.31 metal 137Cs 0.079 chloride 表 2 探测器厚度变化影响一览表
Table 2. Influence of detector thickness (aluminum shell thickness T)
T/mm dose rate/(mSv·h−1) influence rate/% Cs Co Cs Co 4.0 39.821 74.548 −1.87 −1.78 8.0 38.951 73.216 −4.02 −3.54 9.2 38.71 72.546 −4.61 −4.42 9.3 38.557 72.336 −4.99 −4.70 9.4 38.518 72.278 −5.08 −4.77 9.5 38.45 72.158 −5.25 −4.93 9.6 38.395 72.095 −5.39 −5.02 16.0 36.999 70.071 −8.83 −7.68 28.0 33.872 65.288 16.53 13.98 40.0 30.698 60.527 24.35 20.26 表 3 伽玛辐射场D1值变化影响一览表
Table 3. Influence of various D1 in gamma radiation field
D1/cm dose rate/(mSv·h−1) influence rate/% Cs Co Cs Co 10 38.644 72.56 −4.77 −4.40 20 21.727 40.807 −4.82 −4.42 30 13.898 26.103 −4.87 −4.47 40 9.646 18.117 −4.92 −4.53 50 7.082 13.308 −4.98 −4.54 54 6.336 11.905 −5.00 −4.57 55 6.168 11.589 −5.01 −4.57 60 5.419 10.184 −5.05 −4.59 70 4.28 8.043 −5.08 −4.63 80 3.464 6.511 −5.15 −4.69 表 4 伽玛辐射场D2值变化影响一览表
Table 4. Influence of various D2 in gamma radiation field
D2/cm dose rate/(mSv·h−1) influence rate/% Cs Co Cs Co 2.4 7.006 12.604 5.05 1.04 2.5 7.001 12.597 4.96 0.98 5 6.87 12.455 3.00 −0.16 10 6.698 12.275 0.43 −1.60 25 6.483 12.054 −2.81 −3.37 50 6.389 11.96 −4.21 −4.13 100 6.352 11.922 −4.76 −4.43 126 6.347 11.916 −4.84 −4.48 表 5 照射室宽高变化影响一览表
Table 5. Influence of irradiation chamber width and height variation
width by height/(cm×cm) dose rate/(mSv·h-1) influence rate/% Cs Co Cs Co 400×300 6.9703 12.563 4.51 0.71 100×100 6.9785 12.572 4.63 0.78 60×60 6.9961 12.589 4.89 0.91 56×56 6.9999 12.593 4.95 0.95 54×54 7.0046 12.595 5.02 0.96 40×40 7.0651 12.66 5.93 1.48 20×20 8.3402 14.58 25.05 16.87 表 6 伽玛辐射场D3值变化影响一览表
Table 6. Influence of various D3 in gamma radiation field
D3/cm dose rate/(mSv·h−1) influence rate/% Cs Co Cs Co 1 7.0009 12.594 4.97 0.95 4 7.0008 12.594 4.96 0.95 6 7.0007 12.594 4.96 0.95 8 7.0006 12.594 4.96 0.95 10 7.0006 12.594 4.96 0.95 12 7.0005 12.594 4.96 0.95 14 7.0004 12.594 4.96 0.95 16 7.0004 12.594 4.96 0.95 表 7 辐射场空间平方反比变化一览表
Table 7. Inverse squared attenuation law changes of radiation field
D/cm dose rate/(mSv·h−1) influence rate/% Cs Co Cs Co detector no detector detector no detector detector no detector detector no detector 25 58.437 58.443 109.3 109.28 4.61 0.01 4.31 0.02 30 40.581 40.615 75.902 75.91 4.54 0.08 4.27 0.01 40 22.827 22.916 42.695 42.766 4.25 0.39 4.12 0.17 50 14.609 14.772 27.325 27.472 3.59 1.12 3.78 0.54 60 10.145 10.434 18.976 19.254 2.01 2.85 2.95 1.47 63 9.202 9.548 17.211 17.547 1.16 3.76 2.49 1.95 64 8.917 9.286 16.678 17.036 0.84 4.14 2.31 2.15 65 8.645 9.037 16.169 16.551 0.48 4.54 2.12 2.36 66 8.385 8.803 15.682 16.092 0.09 4.99 1.86 2.61 67 8.136 8.583 15.218 15.656 0.36 5.49 1.65 2.88 70 7.454 8 13.941 14.483 1.95 7.33 0.74 3.89 74 6.67 7.392 12.475 13.202 4.96 10.83 0.95 5.83 -
[1] 徐阳. 移动式小尺度参考辐射的Monte Carlo模拟及应用研究[D]. 重庆: 重庆大学, 2016: 13-21.Xu Yang, Simulation study on a minitype reference radiation with Monte Carlo method and its application[D].Chongqing: Chongqing University, 2016: 13-21 [2] G/BT 12162.1-2000, 用于校准剂量仪和剂量率仪及确定其能量相应的X和γ参考辐射第1部分: 辐射特性及产生方法[S].G/BT 12162.1-2000, X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy—Part 1 : Radiation characteristics and production methods[S] [3] ISO 4037-1: 1996, X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy—Part 1: Radiation characteristics and production methods[S]. [4] 徐阳, 魏彪, 刘易鑫, 等. 同位素铯源小尺度参考辐射蒙特卡罗模拟研究[J]. 原子能科学技术, 2017, 51(3):522-528. (Xu Yang, Wei Biao, Liu Yixin, et al. Monte Carlo simulation research of 137Cs minitype reference radiation[J]. Atomic Energy Science and Technology, 2017, 51(3): 522-528 doi: 10.7538/yzk.2017.51.03.0522 [5] 高飞, 肖雪夫, 倪宁, 等. 全景γ参考辐射场中散射辐射的蒙特卡罗模拟[J]. 同位素, 2013, 26(2):110-114. (Gao Fei, Xiao Xuefu, Ni Ning, et al. Monte Carlo simulation of scattered radiation of free-Field geometries gama reference radiation field[J]. Journal of Isotopes, 2013, 26(2): 110-114 doi: 10.7538/tws.2013.26.02.0110 [6] 徐阳, 魏彪, 毛本将, 等. 基于蒙特卡罗的小尺度参考辐射装置屏蔽研究[J]. 强激光与粒子束, 2016, 28:096004. (Xu Yang, Wei Biao, Mao Benjiang, et al. Shielding research of minitype reference radiation device based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2016, 28: 096004 doi: 10.11884/HPLPB201628.160018 [7] Smith B, Matthews K, Hill W, et al. An electronically—collimated gamma-ray detector for intraoperative localization of radiation sources[J]. Medical Physics, 2006, 33(6): 2277-2277. [8] 何庆驹, 李飞, 温自强. 蒙特卡罗软件对伽玛射线屏蔽性的研究[J]. 无线互联科技, 2018(17):12-14. (He Qingju, Li Fei, Wen Ziqiang. Research on gamma ray shielding effectiveness by Monte Carlo software[J]. Wireless Internet Technology, 2018(17): 12-14 doi: 10.3969/j.issn.1672-6944.2018.17.006 [9] 王贵林, 柳敏华, 王成国, 等. γ射线照射量标准装置的建立[J]. 中华放射医学与防护杂志, 1998(3):57-59. (Wang Guilin, Liu Minhua, Wang Chengguo, et al. Establishment of γ-ray exposure standard device[J]. Chinese Journal of Radiological Medicine and Protection, 1998(3): 57-59 [10] Smith B, Matthews K L, Lackie A, et al. An electronically-collimated gamma-ray detector for localization of radiation sources[C]//IEEE Nuclear Science Symposium Conference Record. 2006: 257-263. [11] 王光德. 放射性钴源生产应用现状及进展[C]//中国核学会学术年会. 2017.Wang Guangde. Production and application progress of the radioactive cobalt source[C]//Progress Report on China Nuclear Science & Technology. 2017 [12] 高飞, 肖雪夫, 倪宁. 固定式环境γ辐射剂量率仪现场校准技术[J]. 原子能科学技术, 2015(2):212-217. (Gao Fei, Xiao Xuefu, Ni Ning. On-site calibration technology for fixed environmental gamma radiation rate meter[J]. Atomic Energy Science and Technology, 2015(2): 212-217 doi: 10.7538/yzk.2015.49.02.0212 [13] 刘晖, 邵文成. 137Cs辐射场中空气比释动能率的探讨[J]. 牡丹江教育学院学报, 2008(4):121-122. (Liu Hui, Shao Wencheng. Discussion on the specific kinetic energy of air in Cs-137 radiation field[J]. Journal of Mudanjiang College of Education, 2008(4): 121-122 doi: 10.3969/j.issn.1009-2323.2008.04.062 [14] Nikolaou M E, Spyrou G, Panayiotakis G, et al. Design studies of collimated gamma ray sources[C]//2000 IEEE Nuclear Science Symposium Conference. 2000: 20-100. [15] 高飞, 肖雪夫, 侯金兵, 等. 60Co 单源照射装置的蒙特卡罗方法优化设计[J]. 原子能科学技术, 2014, 48(3):523-527. (Gao Fei, Xiao Xuefu, Hou Jinbing, et al. Optimal design of 60Co single source radiation facility with Monte Carlo method[J]. Atomic Energy Science and Technology, 2014, 48(3): 523-527 doi: 10.7538/yzk.2014.48.03.0523 [16] Kumar A, Dong M G, Sayyed M I, et al. Gamma-ray shielding effectiveness of lead bismuth germanoborate glasses[J]. Glass Physics & Chemistry, 2018, 44(4): 292-299. [17] Leake J W. The effect of ICRP (74) on the response of neutron monitors[J]. Nuclear Instruments & Methods in Physics Research A, 1999, 421(1/2): 365-367.