留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晚期HEMP作用下铁路牵引供电系统GIC算法研究

高志伟 周于翔 朱思熠

高志伟, 周于翔, 朱思熠. 晚期HEMP作用下铁路牵引供电系统GIC算法研究[J]. 强激光与粒子束, 2021, 33: 093001. doi: 10.11884/HPLPB202133.210061
引用本文: 高志伟, 周于翔, 朱思熠. 晚期HEMP作用下铁路牵引供电系统GIC算法研究[J]. 强激光与粒子束, 2021, 33: 093001. doi: 10.11884/HPLPB202133.210061
Gao Zhiwei, Zhou Yuxiang, Zhu Siyi. Study on GIC algorithm of railway traction power supply system under action of late time HEMP[J]. High Power Laser and Particle Beams, 2021, 33: 093001. doi: 10.11884/HPLPB202133.210061
Citation: Gao Zhiwei, Zhou Yuxiang, Zhu Siyi. Study on GIC algorithm of railway traction power supply system under action of late time HEMP[J]. High Power Laser and Particle Beams, 2021, 33: 093001. doi: 10.11884/HPLPB202133.210061

晚期HEMP作用下铁路牵引供电系统GIC算法研究

doi: 10.11884/HPLPB202133.210061
详细信息
    作者简介:

    高志伟,Gao_zhiwei@163.com

  • 中图分类号: TM711

Study on GIC algorithm of railway traction power supply system under action of late time HEMP

  • 摘要: 高空核爆电磁脉冲晚期效应(E3)会引起地磁场剧烈变化并形成地面感应电场。感应电场等效为激励源与地面长距离导体和大地构成回路,产生地磁感应电流 (GIC)。GIC可引起牵引供电系统中变压器直流偏磁,从而严重威胁牵引供电系统的安全运行。本文基于平面波理论、分层大地电导率模型并结合牵引供电系统的电路模型,提出E3作用下的牵引供电系统GIC算法,并以带回流线的直接供电方式的铁路牵引供电系统为例,首次计算了系统GIC情况。结果表明,该供电方式下牵引供电系统中的GIC远大于系统中变压器等设备的耐受值,为进一步研究E3作用下牵引供电系统效应及我国铁路设备选型、灾害防治等提供支撑。
  • 图  1  IEC提出的E3感应电场波形

    Figure  1.  E3 induced electric field waveform proposed by IEC

    图  2  分层大地电导率示意图

    Figure  2.  One-dimensional geodetic conductivity

    图  3  基于分层大地电导率模型与平面波理论的E3感应电场计算流程

    Figure  3.  Calculation process of E3 induced electric field based on layered earth conductivity model and plane wave theory

    图  4  带回流线的直接供电方式电路模型

    Figure  4.  Model of direct power supply with return line

    图  5  带回流线的直接供电方式牵引供电系统算例

    Figure  5.  Calculation example of direct power supply traction power supply system with return line

    图  6  计算用分层大地电导率模型

    Figure  6.  Layered earth conductivity model for calculation

    图  7  不同大地电导率模型下接触网GIC

    Figure  7.  Catenary GIC under different ground conductivity models

    图  8  接触网GIC计算结果

    Figure  8.  Geodetic conductivity model and catenary GIC calculation results

    表  1  带回流线的直接供电方式牵引供电系统算例参数

    Table  1.   Example parameters of traction power supply system with return line

    equipment nameequipment typeDC resistance
    overhead catenaryCTM-1200.186 Ω/km
    carrier cableJTM-950.244 Ω/km
    return lineLBGLJ-2400.121 Ω/km
    railP-500.032 Ω/km
    traction transformerD11-QY-40000/220Rqy=0.0197 Ω
    on board transformerTBQ4-4760/25Rdc=0.5165 Ω
    traction transformer grounding resistanceRjd1=0.21 Ω
    rail grounding resistanceRjd=0.163 Ω
    下载: 导出CSV

    表  2  带回流线的直接供电方式牵引供电系统GIC计算结果

    Table  2.   GIC calculation results of traction power supply system with return Line

    variable parameterparameter valueGIC (Ijc) minimum and maximum value/A
    θ[−8.73,90.7]
    45°[−6.17,64.13]
    90°0
    D5 km[−3.72,38.64]
    15 km[−7.88,81.89]
    25 km[−8.73,90.7]
    下载: 导出CSV
  • [1] IEC 61000-2-9, Electromagnetic compatibility (EMC)—Part 2: environment—section 9: description of HEMP environment—radiated disturbance[S].
    [2] Gilbert J, Radasky W A, Smith K S, et al. HEMP TAPS/HEMP-PC audit report[R]. Meta R-131, 1999; DTRA-TR-00-1, 2002.
    [3] 邢军强, 王菲, 韩刚, 等. 大地直流偏磁影响下电力变压器损耗及温升计算研究[J]. 电气技术, 2020, 21(1):20-24, 30. (Xing Junqiang, Wang Fei, Han Gang, et al. Research on loss and temperature rise calculation method of power transformer under the influence of geomagnetically induced current[J]. Electrical Engineering, 2020, 21(1): 20-24, 30 doi: 10.3969/j.issn.1673-3800.2020.01.007
    [4] 师泯夏, 吴邦, 靳宇晖, 等. 直流偏磁对变压器影响研究综述[J]. 高压电器, 2018, 54(7):20-36, 43. (Shi Minxia, Wu Bang, Jin Yuhui, et al. Research summary on the impacts of DC magnetic bias on transformer[J]. High Voltage Apparatus, 2018, 54(7): 20-36, 43
    [5] Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Goleta: Oak Ridge National Laboratory, 2010.
    [6] Hutchins T. Modeling, simulation, and mitigation of the impacts of the late time (E3) high-altitude electromagnetic pulse on power systems[D]. Urbana: University of Illinois at Urbana-Champaign, 2016.
    [7] Lee R H W, Shetye K S, Birchfield A B, et al. Using detailed ground modeling to evaluate electric grid impacts of late-time high-altitude electromagnetic pulses (E3 HEMP)[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1549-1557. doi: 10.1109/TPWRS.2018.2878533
    [8] 余同彬, 周璧华. HEMP作用下近地有限长电缆外皮感应电流研究[J]. 解放军理工大学学报(自然科学版), 2002, 3(1):8-12. (Yu Tongbin, Zhou Bihua. Study of HEMP induced current in cables with finite length near the ground[J]. Journal of PLA University of Science and Technology, 2002, 3(1): 8-12
    [9] 赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015, 16(9):16-19. (Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015, 16(9): 16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004
    [10] 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007. (Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184
    [11] Ngwira C M, Pulkkinen A, McKinnell L A, et al. Improved modeling of geomagnetically induced currents in the South African power network[J]. Space Weather, 2008, 6: S11004.
    [12] 章鑫, 杜学彬, 刘君. 华北地区地电暴时GIC及涡旋电流响应分析[J]. 地球物理学报, 2017, 60(5):1800-1810. (Zhang Xin, Du Xuebin, Liu Jun. Analysis of GIC and vortex current responses in Huabei region during geoelectric storms[J]. Chinese Journal of Geophysics, 2017, 60(5): 1800-1810 doi: 10.6038/cjg20170516
    [13] 李功新, 王倩, 刘连光. 输电线路地磁感应电流常用算法分析与研究[J]. 现代电力, 2005, 22(5):42-46. (Li Gongxin, Wang Qian, Liu Lianguang. Analysis and study of common algorithms for geomagnetic inductive current in grid[J]. Modern Electric Power, 2005, 22(5): 42-46 doi: 10.3969/j.issn.1007-2322.2005.05.009
    [14] Wait J R. Wave propagation theory[M]. New York: Pergamon, 1981.
    [15] Chew W C. Waves and fields in inhomogeneous media[M]. New York: IEEE Press, 1995.
    [16] Overbye T J, Shetye K S, Hutchins T R, et al. Power grid sensitivity analysis of geomagnetically induced currents[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4821-4828. doi: 10.1109/TPWRS.2013.2274624
    [17] TB 10009-2016, 铁路电力牵引供电设计规范[S].

    TB 10009-2016, Code for design of railway traction power supply[S].
    [18] 周游. 不同强度地磁暴对高铁牵引网影响的研究[D]. 北京: 华北电力大学, 2016.

    Zhou You. Research on the effects of different intensities geomagnetic storms affecting high-speed railway traction network[D]. Beijing: North China Electric Power University, 2016.
    [19] 马骋原. 强磁暴侵害高铁电气一次系统的建模方法研究[D]. 北京: 华北电力大学, 2015.

    Ma Chengyuan. Research on modeling method of strong geomagnetic storm impacting on high-speed rail electrical primary system[D]. Beijing: North China Electric Power University, 2015.
    [20] 曹源. 用于电网GIC计算的大地电阻率模型研究[D]. 北京: 华北电力大学, 2010.

    Cao Yuan. Earth resistivity modeling method for the evaluation of Geomagnetically Induced Current in power grid[D]. Beijing: North China Electric Power University, 2010.
    [21] DL/T 437-2012, 高压直流接地极技术导则[S].

    DL/T 437-2012, Technical guide of HVDC earth electrode system[S].
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-09-04
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回