留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声振动对于激光烧蚀铝表面温度场仿真分析

王岩 殷杰 董颖怀 李跃华 程子政 赵静楠 杨硕

王岩, 殷杰, 董颖怀, 等. 超声振动对于激光烧蚀铝表面温度场仿真分析[J]. 强激光与粒子束, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160
引用本文: 王岩, 殷杰, 董颖怀, 等. 超声振动对于激光烧蚀铝表面温度场仿真分析[J]. 强激光与粒子束, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160
Wang Yan, Yin Jie, Dong Yinghuai, et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160
Citation: Wang Yan, Yin Jie, Dong Yinghuai, et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 2021, 33: 091003. doi: 10.11884/HPLPB202133.210160

超声振动对于激光烧蚀铝表面温度场仿真分析

doi: 10.11884/HPLPB202133.210160
基金项目: 天津市自然科学基金项目(18JCQNJC05200);天津市教委科研计划项目(2018KJ116);天津市自然科学基金青年项目(18JCQNJC75300)
详细信息
    作者简介:

    王岩:王 岩,satansdestiny@163.com

    通讯作者:

    董颖怀,dongyh@tust.edu.cn

  • 中图分类号: O53

Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field

  • 摘要: 针对超声振动对于激光烧蚀铝表面温度场的影响,建立了三维数值模型,利用ANSYS软件对超声振动辅助激光烧蚀金属铝的温度场进行了数值模拟。通过对比不同激光扫描速度、超声振动频率下激光相邻两个光斑温度场随时间的变化,发现相邻光斑的温度、尺寸以及位置均发生改变。数值研究表明,随着激光扫描速度的增加,激光扫描到相同位置的最大温度降低,而且凹坑的深度逐渐变浅;由于超声振动引起的介质分子位移,当超声振动频率为15 kHz时,凹坑温度发生了明显的下降且凹坑位置在振动方向发生了错位,这有利于产生新的激光作用轨迹。
  • 图  1  传统激光搭接率计算示意图

    Figure  1.  Schematic diagram of conventional laser lap rate calculation

    图  2  超声振动复合激光热影响区搭接示意图

    Figure  2.  Schematic diagram of lap joint of ultrasonic vibration composite laser heat affected zone

    图  3  双激光光斑所成温度分布及凹坑形貌图

    Figure  3.  The temperature distribution and pit morphology of the double laser spot

    图  4  复合超声振动双凹坑温度折线图

    Figure  4.  Composite ultrasonic vibration double pit temperature line diagram

    图  5  不同频率下双凹坑位置图

    Figure  5.  Double pit location map at different frequencies

    表  1  铝的热物参数表

    Table  1.   Thermophysical parameters of aluminum

    temperature/℃specific heat
    capacity/(J/(kg·K))
    thermal conductivity/
    (W/(m·K))
    density/
    (kg/m3
    liquidus
    temperature/℃
    solidus
    temperature/℃
    20 899.56 236.57 2700 660.2 660.2
    200 983.24 238.66 2700 660.2 660.2
    500 1121.3 221.49 2700 660.2 660.2
    660 1196.6 212.7 2700 660.2 660.2
    下载: 导出CSV

    表  2  常用对流换热系数范围

    Table  2.   Common convection heat transfer coefficient range

    conditionforced convection
    of gas/(W/(m2∙℃))
    natural air
    convection/(W/(m2∙℃))
    forced convection
    of water/(W/(m2∙℃))
    kerosene natural
    convection/(W/(m2∙℃))
    coefficient values20−1003−101000−1500500−1000
    下载: 导出CSV

    表  3  搭接率计算参数及结果

    Table  3.   Calculation parameters and results of lap joint rate

    scanning speed/(mm/s)amplitude/μmfrequency/kHzinitial phase angle/(°)diameter of heat affected zone/μmoverlap rate/%
    2000005074.71
    200101505064.47
    400101505045.02
    600101505025.22
    80010150508.58
    100010150500
    下载: 导出CSV
  • [1] Martin D J, Wells I T, Goodwin C R. Physics of ultrasound[J]. Physics, 2015: 132-135.
    [2] Marvin C, Ziskin M M. Fundamental physics of ultrasound and its propagation in tissue[J]. Radio Graphics, 1993, 13: 705-709.
    [3] 沈诚, 邹平, 康迪, 等. 超声振动透镜辅助激光打孔实验研究[J]. 中国机械工程, 2020, 31(21):2542-2546. (Shen Cheng, Zou Ping, Kang Di, et al. Experimental study on laser drilling assisted by ultrasonic vibrating lens[J]. China Mechanical Engineering, 2020, 31(21): 2542-2546 doi: 10.3969/j.issn.1004-132X.2020.21.004
    [4] Wang Houxiao, Zhu Sukai, Xu Guoxiang, et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 2018, 104: 133-139.
    [5] Alavi S H, Harimkar S P. Ultrasonic vibration-assisted continuous wave laser surface drilling of materials[J]. Manufacturing Letters, 2015, 4: 1-5. doi: 10.1016/j.mfglet.2015.01.002
    [6] Li Meiyan, Zhang Qi, Han Bin, et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 2020, 125: 105848. doi: 10.1016/j.optlaseng.2019.105848
    [7] Wu Dongjiang, Guo Minhai, Ma Guangyi, et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141: 207-209. doi: 10.1016/j.matlet.2014.11.058
    [8] 徐家乐, 周建忠, 谭文胜, 等. 超声振动辅助激光熔覆钴基合金涂层的抗高温氧化性能[J]. 中国激光, 2019, 46(1):0102006. (Xu Jiale, Zhou Jianzhong, Tan Wensheng, et al. High temperature oxidation resistance of laser cladding cobalt-based alloy coating assisted by ultrasonic vibration[J]. Chinese Journal of Lasers, 2019, 46(1): 0102006
    [9] 张朋波, 秦颖, 赵纪军, 等. 纳秒激光烧蚀铝材料的二维数值模拟[J]. 物理学报, 2010, 59(10):7120-7128. (Zhang Pengbo, Qin Ying, Zhao Jijun, et al. Two-dimensional numerical simulation of nanosecond laser ablation of aluminum materials[J]. Acta Physica Sinica, 2010, 59(10): 7120-7128 doi: 10.7498/aps.59.7120
    [10] 龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005. (Long Chengde, Zhao Bin, Yuan Peng, et al. Numerical study of nanosecond laser ablation of aluminum target with small focal spot[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005
    [11] 闫晓东, 任妮, 汤富领, 等. 移动脉冲激光刻蚀金属/聚酰亚胺数值模拟[J]. 中国激光, 2017, 44:0402001. (Yan Xiaodong, Ren Ni, Tang Fuling, et al. Numerical simulation of metal/polyimide etching with moving pulse laser[J]. Chinese Journal of Lasers, 2017, 44: 0402001 doi: 10.3788/CJL201744.0402001
    [12] 文康, 李和章, 马壮, 等. 光斑尺寸对连续激光辐照铝合金温度响应影响研究[J]. 中国光学, 2020, 13(5):1023-1031. (Wen Kang, Li Hezhang, Ma Zhuang, et al. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Journal of Optics, 2020, 13(5): 1023-1031 doi: 10.37188/CO.2020-0022
    [13] 胡仕成, 夏晨希, 邵高建, 等. 铝熔体中超声声流的数值模拟[J]. 铸造技术, 2010, 31(12):1609-1613. (Hu Shicheng, Xia Chenxi, Shao Gaojian, et al. Numerical simulation of Ultrasonic streams in pure aluminum melts[J]. Foundry Technology., 2010, 31(12): 1609-1613
    [14] Tonry C E H, Djambazov G, Dybalska A, et al. Acoustic resonance for contactless ultrasonic cavitation in alloy melts[J]. Ultrason Sonochem, 2020, 63: 104959. doi: 10.1016/j.ultsonch.2020.104959
    [15] 李玉海, 张乐, 卢伦, 等. 超高强度马氏体时效不锈钢超声疲劳过程中的热效应[J]. 金属热处理, 2015(9):55-58. (Li Yuhai, Zhang Le, Lu Lun, et al. Heat effect of ultra high strength maraging stainless steel during ultrasonic fatigue test[J]. Heat Treatment of Metals., 2015(9): 55-58
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  32
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-08-26
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回