留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位差波前探测与图像重建

张杏云 罗芳琳 李楠 杨程亮 彭增辉 穆全全

张杏云, 罗芳琳, 李楠, 等. 相位差波前探测与图像重建[J]. 强激光与粒子束, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203
引用本文: 张杏云, 罗芳琳, 李楠, 等. 相位差波前探测与图像重建[J]. 强激光与粒子束, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203
Zhang Xingyun, Luo Fanglin, Li Nan, et al. Phase diversity wavefront sensing and image reconstruction[J]. High Power Laser and Particle Beams, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203
Citation: Zhang Xingyun, Luo Fanglin, Li Nan, et al. Phase diversity wavefront sensing and image reconstruction[J]. High Power Laser and Particle Beams, 2021, 33: 081010. doi: 10.11884/HPLPB202133.210203

相位差波前探测与图像重建

doi: 10.11884/HPLPB202133.210203
基金项目: 国家自然科学基金项目(61805238;11774342);中国科学院创新交叉团队项目
详细信息
    作者简介:

    张杏云(1988—),男,博士,副研究员,从事自适应光学及新型光器件研究

    通讯作者:

    穆全全(1980—),男,博士,研究员,从事自适应光学及液晶光学研究

  • 中图分类号: O439

Phase diversity wavefront sensing and image reconstruction

  • 摘要: 相位差技术可以直接利用两幅或多幅图像的强度信息,重构出波前相位信息和目标清晰图像,具有光路简单、成本较低、适用于扩展目标等优点,在望远镜的系统像差检测和目标图像重建方面得到了大量应用。相位差波前探测的关键在于求解非线性代价函数的最优化问题,需要避免陷入局部极值并降低计算时间,才能满足动态变化波前实时探测的需求。同时在重建目标清晰图像时,通常需要做正则化和去噪处理,来提高重建图像的质量。本文主要介绍相位差技术的基本原理,以及近年来的研究进展,并对该技术未来的发展进行了展望。
  • 图  1  离焦作为相位差函数的PD技术示意图

    Figure  1.  Schematic diagram of PD technology with defocus as the phase diversity function

    图  2  代价函数具有单个极值(a)和多个极值(b)的示意图

    Figure  2.  Schematic diagram of cost function with single extremum (a) and multiple extremum (b)

    图  3  三种不同波前幅值的实验结果:从左至右分别为焦面图像、离焦面图像、重建相位和重建图像

    Figure  3.  Experimental results of three different wavefront amplitudes: (from left to right) focal plane images, defocus plane images, reconstructed phases and reconstructed images

    图  4  粒子群算法的迭代方向

    Figure  4.  Iterative direction of particle swarm optimization

    图  5  基于LSTM网络的相位差波前探测

    Figure  5.  Phase diversity wavefront sensing based on LSTM network

    图  6  基于卷积神经网络的相位差波前探测

    Figure  6.  Phase diversity wavefront sensing based on convolution neural network

    图  7  第一行:焦面图像;第二行:未去噪重建图像;第三行:去噪后重建图像

    Figure  7.  First line: focal plane images; Second line: reconstructed images without denoising; Third line: reconstructed images after denoising

    图  8  PD标定NFIRAOS系统非共光路像差

    Figure  8.  Calibration of non-common path aberrations in NFIRAOS system with PD technology

    图  9  太阳观测结果:左-PD恢复前;右-PD恢复后

    Figure  9.  Solar observation data: (left) unreconstructed image; (right) PD reconstructed image

    图  10  1.2 m望远镜白天对国际空间站的成像结果:左-PD恢复前;右-PD恢复后

    Figure  10.  Daytime observation of the International Space Station: (left) unreconstructed image; (right) PD reconstructed image

  • [1] 张逸新, 迟泽英. 光波在大气中的传播与成像[M]. 北京: 国防工业出版社, 1997.

    Zhang Yixin, Chi Zeying. Propagation and imaging of light waves in atmosphere[M]. Beijing: National Defense Industry Press, 1997.
    [2] 杨磊. Phase diversity波前重构的研究及在高分辨图像复原中的应用[D]. 云南: 中国科学院研究生院云南天文台, 2007.

    Yang Lei. Researches of the Phase diversity wave-front reconstruction techniques and its application in the high resolution image restoration[D]. Yunnan: Yunnan Observatory, Graduate School of Chinese Academy of Sciences, 2007
    [3] Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]//Applications of Digital Image Processing III, 1979: 32-39.
    [4] Fusco T, Michau V, Mugnier L, et al. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics[C]//International Conference on Space Optics, 2014.
    [5] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21(5): 829-832.
    [6] Zhang Peiguang, Yang Chengliang, Xu Zihao, et al. High-accuracy wavefront sensing by phase diversity technique with bisymmetric defocuses diversity phase[J]. Scientific Reports, 2017, 7(1): 15361. doi: 10.1038/s41598-017-15597-x
    [7] Nesterov Y. Gradient methods for minimizing composite objective function[J]. Core Discussion Papers, 2007, 140(1): 125-161.
    [8] Shewchuk J R. An introduction to the conjugate gradient method without the agonizing pain[M]. Pittsburgh (USA): Carnegie Mellon University, 1994.
    [9] 张小鸣, 李永新. 基于牛顿迭代法的高精度快速开方算法[J]. 电力自动化设备, 2008, 28(3):75-77. (Zhang Xiaoming, Li Yongxin. High-precision and fast square root algorithm based on Newton iteration method[J]. Electric Power Automation Equipment, 2008, 28(3): 75-77 doi: 10.3969/j.issn.1006-6047.2008.03.018
    [10] Li Donghui, Fukushima M. On the global convergence of the BFGS method for nonconvex unconstrained optimization problems[J]. SIAM Journal on Optimization, 2001, 11(4): 1054-1064. doi: 10.1137/S1052623499354242
    [11] Kirkpatrick S, Gelatt C D, VecchiM P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
    [12] Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MlT Press, 1992.
    [13] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995.
    [14] Zhang Peiguang, Yang Chengliang, Xu Zihao, et al. Hybrid particle swarm global optimization algorithm for phase diversity phase retrieval[J]. Optics Express, 2016, 24(22): 25704. doi: 10.1364/OE.24.025704
    [15] 徐梓浩. 基于相位差法的高分辨率液晶自适应光学技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

    Xu Zihao. Research on high-resolution liquid crystal adaptive optics technique with phase diversity[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.
    [16] Ge Yingjian, Wang Shengqian, Xian Hao. Phase diversity method based on an improved particle swarm algorithm used in co-phasing error detection[J]. Applied Optics, 2020, 59(31): 9735-9743. doi: 10.1364/AO.404707
    [17] Qi Xin, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 2019, 27(18): 26102-26119. doi: 10.1364/OE.27.026102
    [18] Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 2020, 20(17): 4877. doi: 10.3390/s20174877
    [19] Wu Daosheng, Yang Chengliang, Zhang Peiguang, et al. Phase diversity technique with sparse regularization in liquid crystal adaptive optics system[J]. Journal of Astronomical Telescopes Instruments and Systems, 2018, 4(1).
    [20] 李斐, 饶长辉. 相位差法波前传感系统自身误差的分析及消除方法[J]. 强激光与粒子束, 2011, 23(3):599-605. (Li Fei, Rao Changhui. Analysis and elimination of errors in phase diversity wavefront sensing system[J]. High Power Laser and Particle Beams, 2011, 23(3): 599-605 doi: 10.3788/HPLPB20112303.0599
    [21] 王欣, 赵达尊. 图像噪声对相位变更波前传感的影响研究[J]. 光学学报, 2009, 29(8):2142-2146. (Wang Xin, Zhao Dazun. Influence of noise to phase diversity wavefront sensing[J]. Acta Optica Sinica, 2009, 29(8): 2142-2146 doi: 10.3788/AOS20092908.2142
    [22] Yu Hongli, Yang Chengliang, Xu Zihao, et al. Analysis and reduction of errors caused by Poisson noise for phase diversity technique[J]. Optics Express, 2016, 24(19): 22034-22042. doi: 10.1364/OE.24.022034
    [23] Li Dequan, Xu Shuyan, Wang Dong, et al. Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network[J]. Optics Express, 2019, 27(16): 22846-22854. doi: 10.1364/OE.27.022846
    [24] Paxman R G, Fienup J R. Optical misalignment sensing and image reconstruction using phase diversity[J]. Journal of the Optical Society of America A, 1988, 5(5): 914-923.
    [25] Lofdahl M G, Duncan A L, Paxman R G, et al. Phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II Telescope[J]. Astronomical Telescopes & Instrumentation, 1998, 3356: 1190-1201.
    [26] Blanc A, Fusco T, Hartung M, et al. Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique[J]. Astronomy & Astrophysics, 2003, 399: 373-83.
    [27] Georges J A, Dorrance P, Gleichman K, et al. High-speed closed-loop dual deformable-mirror phase-diversity testbed[C]. Proceedings of SPIE, 2007, 6711: 671105.
    [28] Lamb M, Correia C, Sauvage J F, et al. Exploring the operational effects of phase diversity for the calibration of non-common path errors on NFIRAOS[C]//SPIE Astronomical Telescopes + Instrumentation, 2016.
    [29] Carreras R A, Restaino S R. Field experimental results using phase diversity on a binary star[J]. NASA Technical Report, 1996: 97.
    [30] Hirzberger J, Feller A, Riethmüller T, et al. Performance validation of phase diversity image reconstruction techniques[J]. Astronomy & Astrophysics, 2011, 529: 1-5.
    [31] 鲍华, 饶长辉, 田雨, 等. 自适应光学图像事后重建技术研究进展[J]. 光电工程, 2018, 45(3):58-67. (Bao Hua, Rao Changhui, Tian Yu, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 58-67
    [32] Wu Daosheng, Yang Chengliang, Li Hao, et al. Astronomical observation by 2-meter telescope based on liquid crystal adaptive optics with phase diversity[J]. Optics Communications, 2019, 439: 129-132. doi: 10.1016/j.optcom.2019.01.036
    [33] 明名, 陈涛, 徐天爽. 基于相位差异技术的车载白天高分辨成像系统[J]. 光子学报, 2019, 48(3):129-137. (Ming Ming, Chen Tao, Xu Tianshuang. Vehicular daytime high-resolution imaging system based on phase-diversity technology[J]. Acta Photonica Sinica, 2019, 48(3): 129-137
  • 加载中
图(10)
计量
  • 文章访问数:  1679
  • HTML全文浏览量:  386
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回