留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的选区激光熔化残余应力预测

景艳龙 李杰 石文天 闫晓玲

景艳龙, 李杰, 石文天, 等. 基于神经网络的选区激光熔化残余应力预测[J]. 强激光与粒子束, 2021, 33: 109001. doi: 10.11884/HPLPB202133.210223
引用本文: 景艳龙, 李杰, 石文天, 等. 基于神经网络的选区激光熔化残余应力预测[J]. 强激光与粒子束, 2021, 33: 109001. doi: 10.11884/HPLPB202133.210223
Jing Yanlong, Li Jie, Shi Wentian, et al. Prediction of residual stress in selective laser melting based on neural network[J]. High Power Laser and Particle Beams, 2021, 33: 109001. doi: 10.11884/HPLPB202133.210223
Citation: Jing Yanlong, Li Jie, Shi Wentian, et al. Prediction of residual stress in selective laser melting based on neural network[J]. High Power Laser and Particle Beams, 2021, 33: 109001. doi: 10.11884/HPLPB202133.210223

基于神经网络的选区激光熔化残余应力预测

doi: 10.11884/HPLPB202133.210223
基金项目: 国家自然科学基金项目(51975006)
详细信息
    作者简介:

    景艳龙,jingyanlong@btbu.edu.cn

    通讯作者:

    李 杰,lijie0739@btbu.edu.cn

  • 中图分类号: TN249

Prediction of residual stress in selective laser melting based on neural network

  • 摘要: 当前对选区激光熔化产生的残余应力预测方法主要为数值模拟,但由于设备、环境、粉末等因素差异性较大,且具有较大不确定性,很难建立符合实际情况的数值模拟模型。利用神经网络在预测多变量、复杂线性信息处理方面能力强的特点,建立适用于预测316L不锈钢粉末选区激光熔化残余应力的模型。使用选区激光熔化技术打印相当数量的不同工艺参数的试样,采用超声波检测其内部残余应力作为神经网络的训练样本,并使用这些样本对神经网络模型进行训练,获得具有预测功能的神经网络,将验证样本的工艺参数输入神经网络,计算出预测的残余应力值,与实际检测值进行对比。实验结果表明,预测值与实际测量值偏差较小,验证了所提方法的有效性。采用神经网络预测残余应力的方法,可以快速确定不同选区激光熔化工艺参数对应的残余应力,避免设置残余应力较高的工艺参数,有效缩短制备高质量工件试样的周期,降低成本。
  • 图  1  LCR波传播示意图

    Figure  1.  Schematic diagram of LCR wave propagation

    图  2  SLM神经网络模型

    Figure  2.  SLM neural network model

    图  3  试样尺寸图

    Figure  3.  Sample size

    图  4  试样实物照片

    Figure  4.  Photographs of samples

    图  5  扫描电镜下的微观组织图

    Figure  5.  Microstructure images by scanning electron microscope

    图  6  声时差-加载应力曲线

    Figure  6.  Graph of acoustic time difference-loading stress

    图  7  功率-残余应力曲线

    Figure  7.  Graph of power-residual stress

    图  8  扫描速度-残余应力曲线

    Figure  8.  Graphs of scanning speed-residual stress

    图  9  训练样本预测值与实测值

    Figure  9.  Predicted value and measured value of training samples

    图  10  验证样本预测值与实测值

    Figure  10.  Predicted value and measured value of verifying samples

    表  1  316L不锈钢粉末化学成分比重

    Table  1.   Chemical composition of 316L stainless steel by weight

    elementcontent/%
    elementcontent/%
    FebalanceN0.1max
    Cr16~18O0.1max
    Ni10~14P0.045max
    Mo2~3C0.03max
    Mn2maxS0.03max
    Si1max
    下载: 导出CSV

    表  2  训练样本SLM工艺参数

    Table  2.   Training process parameters of experiments in SLM

    process parameterlaser power/Wscanning speed/(m·s−1)powder thickness/μmpreheating temperature/℃
    level 1 50 0.25 50 50
    level 2 100 0.375 80 100
    level 3 150 0.5
    level 4 200 0.625
    level 5 250 0.75
    level 6 300 0.875
    level 7 350 1
    level 8 400 1.125
    level 9 1.25
    level 10 1.5
    下载: 导出CSV
  • [1] Sing S L, An Jia, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3): 369-385. doi: 10.1002/jor.23075
    [2] 王晨光, 沈显峰, 王国伟, 等. 金属面曝光选区激光熔化原理装置及试验研究[J]. 强激光与粒子束, 2021, 33:029001. (Wang Chenguang, Shen Xianfeng, Wang Guowei, et al. Principle device and experimental research of surface exposure selective laser melting for metal powder[J]. High Power Laser and Particle Beams, 2021, 33: 029001 doi: 10.11884/HPLPB202133.200221
    [3] 龚丞, 王丽芳, 朱刚贤, 等. 激光增材制造工艺参量对熔覆层残余应力的影响[J]. 激光技术, 2019, 43(2):263-268. (Gong Chen, Wang Lifang, Zhu Gangxian, et al. Influence of process parameters on the residual stress of cladding layers by laser additive manufacturing[J]. Laser Technology, 2019, 43(2): 263-268 doi: 10.7510/jgjs.issn.1001-3806.2019.02.021
    [4] 杨健, 陈静, 杨海欧, 等. 激光快速成形过程中残余应力分布的实验研究[J]. 稀有金属材料与工程, 2004, 33(12):1304-1307. (Yang Jian, Chen Jing, Yang Haiou, et al. Experimental study on residual stress distribution of laser rapid forming process[J]. Rare Metal Materials and Engineering, 2004, 33(12): 1304-1307 doi: 10.3321/j.issn:1002-185X.2004.12.017
    [5] Yan Xiaoling, Pang Jincheng, Jing Yanlong. Ultrasonic measurement of stress in SLM 316L stainless steel forming parts manufactured using different scanning strategies[J]. Materials, 2019, 12: 2719. doi: 10.3390/ma12172719
    [6] 李九霄, 李鸣佩, 杨东野, 等. 选择性激光熔化制造金属构件残余应力的研究进展[J]. 机械工程材料, 2018, 42(8):1-6. (Li Jiuxiao, Li Mingpei, Yang Dongye, et al. Research progress on residual stress in metal component manufactured by selective laser melting[J]. Materials for Mechanical Engineering, 2018, 42(8): 1-6 doi: 10.11973/jxgccl201808001
    [7] 杜畅, 张津, 连勇, 等. 激光增材制造残余应力研究现状[J]. 表面技术, 2019, 48(1):200-207. (Du Chang, Zhang Jin, Lian Yong, et al. Research progress on residual stress in laser additive manufacturing[J]. Surface Technology, 2019, 48(1): 200-207
    [8] 梁祖磊, 孙中刚, 张少驰, 等. 数值模拟在激光选区熔化中的应用及研究现状[J]. 航空制造技术, 2018, 61(22):87-91,97. (Liang Zulei, Sun Zhonggang, Zhang Shaochi, et al. Application and research status of numerical simulation in laser selective melting[J]. Aeronautical Manufacturing Technology, 2018, 61(22): 87-91,97
    [9] 倪立斌, 刘继常, 伍耀庭, 等. 基于神经网络和粒子群算法的激光熔覆工艺优化[J]. 中国激光, 2011, 38:0203003. (Ni Libin, Liu Jichang, Wu Yaoting, et al. Optimization of laser cladding process variables based on neural network and particle swarm optimization algorithms[J]. Chinese Journal of Lasers, 2011, 38: 0203003 doi: 10.3788/CJL201138.0203003
    [10] Akbari M, Saedodin S, Panjehpour A, et al. Numerical simulation and designing artificial neural network for estimating melt pool geometry and temperature distribution in laser welding of Ti6Al4V alloy[J]. Optik, 2016, 127(23): 11161-11172. doi: 10.1016/j.ijleo.2016.09.042
    [11] Li Kun, Yan Shilin, Pan Wenfeng, et al. Warpage optimization of fiber-reinforced composite injection molding by combining back propagation neural network and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/4): 963-970.
    [12] 雷凯云, 秦训鹏, 刘华明, 等. 基于神经网络的宽带激光熔覆熔池特征参数预测[J]. 光电子·激光, 2018, 29(11):1212-1220. (Lei Kaiyun, Qin Xunpeng, Liu Huaming, et al. Prediction on characteristics of molten pool in wide-band laser cladding based on neural network[J]. Journal of Optoelectronics·Laser, 2018, 29(11): 1212-1220
    [13] 姜淑娟, 刘伟军, 南亮亮. 基于神经网络的激光熔覆高度预测[J]. 机械工程学报, 2009, 45(3):269-274,281. (Jiang Shujuan, Liu Weijun, Nan Liangliang. Laser cladding height prediction based on neural network[J]. Journal of Mechanical Engineering, 2009, 45(3): 269-274,281 doi: 10.3901/JME.2009.03.269
    [14] 徐浪, 潘勤学, 宿亮, 等. 焊接残余应力超声无损检测技术[J]. 计测技术, 2012, 32(6):29-32,53. (Xu Lang, Pan Qinxue, Su Liang, et al. Compensation technology for nondestructive testing of welded residual stress by ultrasonic[J]. Metrology & Measurement Technology, 2012, 32(6): 29-32,53 doi: 10.3969/j.issn.1674-5795.2012.06.008
    [15] 徐春广, 宋文涛, 潘勤学, 等. 残余应力的超声检测方法[J]. 无损检测, 2014, 36(7):25-31. (Xu Chunguang, Song Wentao, Pan Qinxue, et al. Residual stress nondestructive testing method using ultrasonic[J]. Nondestructive Testing, 2014, 36(7): 25-31
    [16] Liu Huaming, Qin Xunpeng, Huang Song, et al. Geometry characteristics prediction of single track cladding deposited by high power diode laser based on genetic algorithm and neural network[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(7): 1061-1070. doi: 10.1007/s12541-018-0126-8
    [17] 朱剑英. 智能系统非经典数学方法[M]. 武汉: 华中科技大学出版社, 2001

    Zhu Jianying. Non-classical mathematics for intelligent systems[M]. Wuhan: Huazhong University of Science and Technology Press, 2001
    [18] 王东生, 杨友文, 田宗军, 等. 基于神经网络和遗传算法的激光多层熔覆厚纳米陶瓷涂层工艺优化[J]. 中国激光, 2013, 40:0903001. (Wang Dongsheng, Yang Youwen, Tian Zongjun, et al. Process optimization of thick nanostructured ceramic coating by laser multi-layer cladding based on neural network and genetic algorithm[J]. Chinese Journal of Lasers, 2013, 40: 0903001 doi: 10.3788/CJL201340.0903001
    [19] 徐春广, 李焕新, 王俊峰, 等. 残余应力的超声横纵波检测方法[J]. 声学学报, 2017, 42(2):195-204. (Xu Chunguang, Li Huanxin, Wang Junfeng, et al. Ultrasonic shear and longitudinal wave testing method of residual stress[J]. Acta Acustica, 2017, 42(2): 195-204
    [20] 黄本生, 陈权, 杨江, 等. Q345/316L异种钢焊接残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(2):138-144. (Huang Bensheng, Chen Quan, Yang Jiang, et al. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. Transactions of the China Welding Institution, 2019, 40(2): 138-144
    [21] 于宝义, 何亮, 郑黎, 等. SLM成形ALSi10Mg合金残余应力数值模拟及组织性能分析[J]. 特种铸造及有色合金, 2020, 40(4):349-355. (Yu Baoyi, He Liang, Zheng Li, et al. Numerical simulation and microstructure analysis of residual stress in SLM formed AlSi10Mg[J]. Special Casting & Nonferrous Alloys, 2020, 40(4): 349-355
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  928
  • HTML全文浏览量:  337
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-09-15
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回