3D parallel full electromagnetic particle-in-cell method for simulating responses of cavity internal electromagnetic pulse
-
摘要: X射线辐照飞行器等腔体在其内部产生的腔体内电磁脉冲,会干扰其内部电子系统的正常工作,进而影响飞行器的运行和生存。介绍一种三维并行全电磁粒子方法,用于模拟X射线辐照腔体在其内部产生的瞬态电磁脉冲响应。在这一数值方法中,时域有限差分方法和Particle-in-Cell方法用来求解瞬态电磁场的产生和带电粒子运动之间的耦合关系,有效电流分配方法用来计算瞬态电磁场产生的源项。该方法基于JASMIN并行框架实现,可模拟含数亿网格和数亿粒子的三维腔体结构的内电磁脉冲响应,且具备大规模并行的优势。用这一方法来模拟圆柱腔体在X射线辐照下的腔体内电磁脉冲响应,其计算结果与文献结果吻合较好,验证了算法的有效性和正确性。
-
关键词:
- 系统电磁脉冲 /
- 腔体内电磁脉冲 /
- 三维并行全电磁粒子方法 /
- Particle-in-Cell方法
Abstract: Cavity internal electromagnetic pulse (IEMP) is generated by the irradiation of X-rays on cavities, such as spacecrafts. It would disturb the normal operation of electrical systems inside spacecrafts and further affect their survival. In this paper, we present a 3D parallel full electromagnetic particle-in-cell (PIC) method for simulating cavity IEMP responses. In the proposed method, the finite difference time domain (FDTD) method and the PIC method are used to solve the coupling between the formation of transient electromagnetic fields and the movement of particles; the effective current distribution method is adopted to compute the source of electromagnetic fields, which is the current density. The proposed method is coded based on JASMIN, so it supports massively parallel computing and could be used to simulate cavity IEMP responses with hundreds of millions mesh cells and hundreds of millions particles. In the end, the proposed method is applied to compute the IEMP responses of a cylinder irradiated by pulsed X-rays. The results agree well with those from literature, verifying the accuracy of the proposed method. -
表 1 圆柱腔体的共振频率
Table 1. Resonant frequencies of a 50 cm long cylinder with a diameterof 50 cm
resonant mode theoretical frequency/MHz calculated frequency/MHz relative difference/% TM010 459 460.6 0.35 TM011 549 549.7 0.13 TM012 755 756.6 0.21 TM020 1054 1057 0.28 TM021 1096 1099 0.27 -
[1] Higgins D, Lee K, Marin L. System-generated EMP[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22. doi: 10.1109/TAP.1978.1141797 [2] Wilson A. Theoretical studies of SGEMP field generation[R]. Theoretical Notes, TN-275, 1974. [3] Little R G, Face S H, Lowell R A, et al. IEMP/SGEMP simulation program[R]. Bedford: Simulation Physics, Inc. , 1977. [4] Brumley F B, Evans D C, Mangan D L. IEMP studies of a dielectric-filled cavity: a comparison of experiment and theory[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 48-57. doi: 10.1109/TNS.1973.4327372 [5] Turner C D, Seidel D B, Pasik M F. EMPHASIS/Nevada UTDEM user guide. version 2.0[R]. SAND2011-6644, 2011. [6] 马良, 程引会, 吴伟, 等. 腔体系统电磁脉冲模拟中的电子发射面[J]. 强激光与粒子束, 2012, 24(12):2915-2919. (Ma Liang, Cheng Yinhui, Wu Wei, et al. Electron emission boundary in cavity system generate electromagnetic pulse simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2915-2919 doi: 10.3788/HPLPB20122412.2915 [7] 徐志谦, 孟萃, 刘以农. 用粒子模拟方法研究SG-III装置的腔体SGEMP[J]. 太赫兹科学与电子信息学报, 2018, 16(6):1120-1124. (Xu Zhiqian, Meng Cui, Liu Yinong. Study on cavity SGEMP of the SG-III facility by particle-in-cell method[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(6): 1120-1124 doi: 10.11805/TKYDA201806.1120 [8] Xu Zhiqian, Meng Cui, Jiang Yunsheng, et al. 3-D simulation of cavity SGEMP interference generated by pulsed X-rays[J]. IEEE Transactions on Nuclear Science, 2020, 67(2): 425-433. doi: 10.1109/TNS.2020.2963983 [9] Mo Zeyao, Zhang Aiqing, Cao Xiaolin, et al. JASMIN: A parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science in China, 2010, 4(4): 480-488. doi: 10.1007/s11704-010-0120-5 [10] JASMIN webpage, 2020[EB/OL]. http://www.caep-scns.ac.cn/JASMIN.php. [11] Taflove A, Hagness S C. Computational electrodynamics: the finite-difference time-domain method[R]. Boston: Artech House, 2000. [12] Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. Hoboken: CRC Press, 2004. [13] 银燕, 常文蔚, 徐涵, 等. 等离子体粒子模拟中的有效电流分配方法[J]. 计算物理, 2007, 24(6):655-659. (Yin Yan, Chang Wenwei, Xu Han, et al. Charge-conserving current assignment algorithm in particle simulation of plasma[J]. Chinese Journal of Computational Physics, 2007, 24(6): 655-659 doi: 10.3969/j.issn.1001-246X.2007.06.004 [14] 系统电磁脉冲效应模拟软件(SGEMP-NSSv1.0). 计算机软件著作权: 2020SR1834377[P]. 2020System Generated Electromagnetic Pulse Numerical Simulation Software (SGEMP-NSS v1.0). Copyright registration of computer programs in China: 2020SR1834377[P]. 2020. [15] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析[J]. 计算机辅助设计与图形学学报, 2014, 26(5):675-686. (Xiao Li, Cao Xiaolin, Wang Huawei, et al. Large-scale data visual analysis for numerical simulation of laser fusion[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675-686 [16] TeraVAP webpage, 2020[EB/OL]. http://www.caep-scns.ac.cn/TeraVAP.php.