Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube
-
摘要: 为满足现代信息化战争对超宽带行波管的需求,对2~18 GHz超宽带行波管的高频慢波结构进行了研究分析。在传统宽带行波管的基础上引入非翼片加载段的正常色散特性,首次实现2~18 GHz 超宽带高频慢波结构设计,最大带宽达到9∶1。同时输出端螺旋线螺距调整为正渐变分布,能够进一步优化低频段二次谐波抑制比,提高高频段饱和输出功率。结果表明,全频带的基波输出功率达到100 W,二次谐波抑制比优于−3 dBc,2 GHz频点二次谐波抑制比优于−5 dBc,为超宽带大功率器件的设计提供了理论基础。Abstract: The high-frequency slow-wave structure of 2−18 GHz ultra-wideband traveling-wave tube (TWT) is studied and analyzed to meet the requirements of modern information warfare for TWT. Based on the traditional wideband TWT, the positive dispersion characteristics of non-fin loading section were introduced to realize the 2−18 GHz ultra-wideband high-frequency slow wave structure, with the maximum bandwidth of 9∶1. Results show that the output power of fundamental wave is up to 100 W, the second harmonic suppression ratio is better than −3 dBc in the full frequency band, and the second harmonic suppression ratio is better than −5 dBc at 2 GHz, which provides a theoretical basis for the design of ultra-wideband high-power devices. At the same time, the spiral pitch at the output end is adjusted to a positive gradient distribution to further optimize the low frequency secondary wave suppression ratio and improve the saturation output power of the high frequency band.
-
Key words:
- ultra-wide band /
- positive dispersion /
- negative dispersion /
- helix /
- traveling-wave tube
-
现代信息化战争中,微波功率器件是雷达、通信、电子对抗等系统的核心。作为得天独厚的宽带大功率器件[1],行波管正处于快速发展阶段,在频率带宽、功率密度及设计、制造等领域的持续进步推动了新一代系统发展[2-3]。在信息对抗和复杂电磁环境构建领域,传统分为2~6 GHz和6~18 GHz两个频段,主要受制于功率器件的带宽和大功率天线两个因素,随着无人机蜂群、单兵系统及大功率超宽带阵列的出现,2~18 GHz超宽带成为近年的研究热点[4-5]。传统宽带行波管采用翼片加载技术实现3∶1工作带宽,如6~18 GHz 100 W[6-7],但由于谐波频率分量的能量增加使得基波频率互作用被破坏掉,传统宽带行波管的最大相对带宽为4.5∶1(4~18 GHz)[8]。本文借鉴速调管参差调谐和耦合腔行波管色散组合拓展工作带宽的思想[9,10],在传统宽带行波管的基础上引入非翼片加载段的正常色散特性,减弱了谐波分量的产生,提高基波的功率输出,是一种新颖的超宽带色散组合技术,首次实现2~18 GHz 超宽带设计,最大带宽达到9∶1,相对带宽提高一倍,全频带的基波输出功率达到100 W,二次谐波抑制比优于−3 dBc。
1. 高频慢波结构设计
宽带行波管的高频慢波结构主要由管壳、金属翼片、夹持杆和螺旋线构成,如图1所示(该示意图中的金属翼片和夹持杆的形状分别为T形和矩形,根据设计的需要也可选取其他不同的形状)。高频慢波结构是注-波互作用的场所,当阴极发射的电子进入互作用系统,发生电子群聚和超越,形成一个注-波自洽过程,大部分的电子动能转化为电磁波的微波能,从而实现了电磁波的放大。
1.1 基本参数设计
螺旋线行波管高频慢波结构的设计中,首先会依据技术指标,选取工作频带内中心频点
ω0 进行设计,初步确定较合适的γa ,r0/r0aa (γ≈ω0/vp 为电磁波径向传播常数,a 为螺旋线平均半径,r0 为电子注半径,r0/r0aa 为电子注填充比)、导流系数Pμ ,根据经验分配互作用区电子效率ηe ,计算求得工作电压V0 ,工作电流I0 ,螺旋线平均半径a ,最佳同步相速vp 等初步参数[11]。已知目标输出功率
Pout ,电子枪输出功率为P0=Pout/ηe (1) 利用导流系数
Pμ 与电子枪输出功率P0 之间关系得到工作电压V0=(P0Pμ ×10−6)2/5 (2) 电磁波最佳同步相速
vp 与电子注初始速度v0 之间关系为vp=v01+0.1742βer0√FPμ (3) 式中:
F 为等离子体频率降低因子[11];βe 为电子注的传播相位常数。因此,通过工作电压
V0 得到电子注的初始速度v0 。对于螺旋线行波管,增益频宽最大值对应于γa=1.3 左右,求解式(3)即可得到电磁波与慢空间电荷波同步的相速vp 与螺旋线平均半径a 。若
ka 太大时则容易产生返波振荡(k 为自由空间相位常数),若ka 过小时,使聚焦和电子枪设计困难,所以需要调整γa ,r0/r0aa ,Pμ 的大小。根据式(1)~(3)等确定基本参量如表1所示。V0/V I0/A a/mm r0/mm 4500 0.18 0.72 0.288 1.2 谐波的产生和抑制
宽带行波管中二次及以上时间谐波会处于工作带宽内,谐波电场的频率是基波电场频率的
n 倍(即ωh=nωf ,ωh 为谐波电场的角频率,ωf 为基波电场的角频率)。如图2所示,基波电场的半周期会包含二次谐波的一个周期,二次谐波的半周期会包含三次谐波的四分之三个周期,以此类推,一直到n 次谐波。因此,在基波场2π 周期内,如果通过某些手段强制性地将谐波电场滞后于基波场,当n 次谐波电场相较于基波场相位有了2π /2π nn 弧度的偏移时,电子与电磁波同步作用的过程中,电子处于基波场减速区域,同时在n 次谐波电场的加速区域[12],基波功率得到放大,谐波得到抑制。2~18 GHz行波管低频点2 GHz的谐波次数为9次,传统的双跳变螺距高频慢波结构不能较好地抑制谐波。采用如图3所示的正反常色散组合,给定电压线后,具有反常色散特性的高频慢波结构在全频带(即
fmin ~fmax ,fmin 为允许行波管工作最低频率,fmax 为允许行波管工作最高频率)内能激励放大电磁波时,调整正常色散特性的高频慢波结构,直到高频段(即f0 ~fmax ,f0 为中心工作频率)内电磁波相速处于同步放大区,低频工作带宽(即fmin ~f0 )内电磁波相速不处于同步放大区。这种正反常色散的组合特性会补偿高频段饱和输出功率,抑制低频段谐波功率的产生。1.3 翼片结构和非翼片结构设计
从小信号模型出发,考虑工作频带内增益近似相同[13],有
dvpdf=−bv2pv0dCdf (4) 这里
C 为皮尔斯定义的增益参量,一般为0.01~0.10。此时,需要求速度参量b在全频带近似保持相同,耦合阻抗随着频率的增加而减小,C 又正比于耦合阻抗,有dC/df<0 ,即dvp/df>0 ,色散特性必须为反常色散;此外,反常色散对于谐波抑制也有一定的效果。因此,具有翼片加载的高频慢波结构能够满足上述条件,使色散曲线达到反常色散。不同金属翼片加载的慢波结构对色散特性和耦合阻抗的影响各不相同,如何选取合适的金属翼片结构是至关重要的。现有宽带行波管高频慢波结构主要采取扇形翼片加载和T形翼片加载两种方式,在近乎相同结构尺寸的情况下,调整扇形和T形翼片半径、角度,使两种结构的色散曲线几乎相同时,T形结构更易达到反常色散,耦合阻抗高于扇形翼片结构[14]。考虑到工艺水平及更易实现性,采用矩形夹持杆和T形金属翼片加载的高频慢波结构和矩形夹持杆的高频慢波结构,如图4(a)所示。图4(b)为非翼片结构,色散为正常色散。
除高频慢波结构的尺寸外,还应考虑电磁波在高频慢波结构中的损耗,主要是夹持杆、螺旋线和管壳材料的选取。螺旋线和管壳采用金属材料,一般为钼、铜、钨和蒙乃尔四种,当金属材料的导电率越大,表面电阻就越小,导体损耗就越小。为了减少带内的金属损耗,选取质地较软,导电率高的金属铜。夹持杆为固定螺旋线,且实现螺旋线与管壳间的绝缘,一般为金刚石、氧化铍和氮化硼,本设计选取氮化硼夹持杆。表2中给出了螺旋线行波管中的金属翼片和夹持杆结构等参量。
Vn/(°) Rl/mm Rs/mm W1/mm W2/mm Rc/mm 65 1.27 1.02 0.4 0.4 1.65 1.4 螺距跳变设计
图5所示的高频慢波结构helix 1-1,在输入输出段的交点处一次切断并加入衰减。它由L0,L2和L3段螺距不同的反常色散高频慢波结构和L1段正常色散高频慢波结构组成:1)L0段建立起增长波,使前向波增益最大化;2)L1段延迟低频段信号注-波互作用,推迟二次谐波激励,补偿高频段饱和输出功率;3)L2段相速增加,尽可能最大化形成电子群聚;4)L3段相速再次降低,进一步提高输出功率和电子效率[15]。对helix1-1结构进行了注-波互作用数值仿真分析;并在helix1-1结构基础上,对输出端部分进行了螺距正渐变的优化(如图5中helix 1-2所示),结果显示,能更进一步降低谐波功率,增加高频段饱和输出功率。
2. 冷参数特性求解
冷参数求解过程中设定单周期相移为
φ [16],在单个周期内电磁波相速度表示为vp=ωβ0=2π Re(f)φp (5) 其中
β0=φ/φpp ,φ 为本征频率f 所对应的慢波结构一个周期内的相位差,p 为螺旋线螺距,β0 为空间谐波m=0 时的电磁波传播相位常数,vp 为空间谐波m=0 时的电磁波相速,由式(5)得到所求频率f 处的色散特性。耦合阻抗的求解中[17],有Km=E2zm2β2mPr (6) 其中,
Ezm 为m 次空间谐波的纵向电场幅值(求解过程中取r=0 时的纵向电场幅值),Pr 为总空间谐波的功率流的平均值,螺旋线行波管一般为最低阶模式电磁波与电子注进行互作用,所以一般取m=0 得到基波的耦合阻抗。慢波结构中取电磁波传播衰减因子为
α ,由传输功率的大小正比于衰减因子的平方有P(z)=Pe−2αz 。即功率减少量可用−dP/dz=2αP 表示,那么每单位长度中传输功率的减少量为PL=2αP ,有衰减常数α=PL2P(Np/m)=8.686PL2P(dB/m) (7) 式中:
PL 为每单位长度中传输功率的减少量;P 为传输系统中的总功率流。通过式(5)~(7),分别得到了不同螺旋线螺距P0,P1,P2和P3的高频慢波结构随频率变化的色散曲线、耦合阻抗和衰减常数(如图6所示)。相较于图4(b)所示高频慢波结构,金属翼片加载结构(图4(a))会抑制低频段相速,使色散曲线从正常色散转变为反常色散;影响螺旋线纵向电场和功率流大小,导致耦合阻抗的降低;增加电磁波的损耗,导致衰减常数的增加。L0,L2和L3三段中螺旋线螺距分别为P0,P2和P3,为T形金属翼片加载和矩形夹持杆结构,在螺距P3~P2的变化范围内对高频段耦合阻抗影响较小;当螺距变大时,归一化相速整体变大,将一个周期内的螺旋线沿纵向拉直,长度减小,金属损耗减小,所以衰减常数减小。
3. 数值仿真分析
3.1 聚焦磁场设计
在注-波互作用的聚焦磁场设计中,常见的聚焦方式有均匀磁场聚焦、周期永磁聚焦和静电聚焦,螺旋线行波管的设计一般采用周期永磁聚焦系统(PPM)。在计算得出电子注半径
r0 、工作电压V0 和工作电流I0 后,通过公式(8)和(9)求得行波管互作用区聚束磁场Bz [18]。{BB=833r0I1/20V1/40Bz=√2BB (8) 其中,
BB 为布里渊磁场幅值,Bz 为理想情况下的磁场幅值[18]。磁场周期为Lmax=267.261×√V0Bz (9) 一般实际磁场幅值为布里渊磁场
BB 的1.5~2倍。电子注压缩比越小,入射情况越好,取值也越小。3.2 注-波互作用数值仿真分析
如图5中helix 1-1所示,在确保高频段输出功率的情况下,为了实现上述目标,分析了正常色散段L1对二次谐波及输出功率的影响因素:1)L1段长度;2)L1段中电子与高频段电磁波处于同步放大区时,螺距P1跳变幅度;3)P1段中电子与高频段电磁波不处于同步放大区时,螺距P1跳变幅度。
图7中比较不同螺距P1和归一化螺距P0结构下色散曲线随频率的变化,当未加载段螺距P1的值在中高频段以上处于同步互作用区且相速略低于L0段时,该高频慢波结构在L0~L1段的高频段会建立起良好的增长波、低频段会抑制谐波功率的增长。因此,在helix 1的基础上(如图8所示),任意选取处于同步区的螺距P1的L1段替换掉L0段的某一点到切断的位置,保持Li不变(L1为图8中输入端到切断区长度),分析比较不同长度的未加载段对二次谐波抑制的影响。如图9所示,比较helix 1结构与L1/Li取值为0.250,0.375,0.500,0.625时的2 GHz频点二次谐波抑制比和18 GHz频点的饱和输出功率。结果表明当L1/Li=0.250,0.375时,不仅能增强高频点的输出功率,而且对低频点二次谐波有一定抑制。随着L1/Li比值的增加二次谐波抑制比先增大后减小,在L1/Li=0.5时出现峰值点;18 GHz频点饱和输出功率会随着L1/Li比值变大而减小,在L1/Li=0.250时有最大饱和功率。为保持高频段和低频段性能均衡,选取合适的L1/Li值尤为重要。
进一步的探究中,保证其余段参数和衰减切断区都不变的情况下,分析未加载段的增加对于二次谐波的影响。确定L1/Li=0.375,通过延长L1段5,10,15,20,25 mm,得到二次谐波下基波输出功率及二次谐波抑制比和高频段饱和输出功率。图10(a)和(b)仿真结果显示,随着L1段逐渐增加,2 GHz频点在同等激励下基波输出功率越来越大,从50.34 dBm增加到了52.88 dBm;二次谐波抑制比越来越小,从−3.40 dBc减小至−12.70 dBc,除2 GHz频点外,3~9 GHz频点二次谐波抑制比都有不同程度增加,其中3 GHz谐波功率增加最多,二次谐波抑制比从−8.50 dBc增加至−4.04 dBc;当增加的部分从5 mm变到25 mm时,频点内最差二次谐波抑制比已达到−2.25 dBc。图10(c)仿真数据显示,10~13 GHz饱和输出功率随L1长度变化不明显,处于52.30 dBm到52.70 dBm之间;14~18 GHz输出功率随着L1增加部分先增加后减小,当未加载段L1增加部分超过20 mm时,输出功率最大下降约0.80 dBm。这表明加入不同长度的正常色散段对二次谐波抑制有明显的影响,对高频段饱和输出功率影响较小。因此,不同长度的L1段对2~18 GHz行波管的二次谐波产生抑制。
基于上述结论,选取增加了15 mm的L1段,并分析问题2)和3)的影响。从图7中可直观的看到螺距P0(归一化)下的加载段L0较不同螺距P1下未加载L1段的归一化相速随频率的变化关系。取不同的螺距P1,与螺距P0=P1时进行了比较,2 GHz和18 GHz仿真数据如图11所示。在图11(a)中,当归一化螺距P1处于0.86至1.00时(也即L0~L1负跳变结构),2 GHz基波输出功率大于均匀段结构(P0=P1);在P1/P0=0.97时,基波输出功率最高,二次谐波输出功率较高于均匀段,但整体上处于可接受范围之内;当归一化螺距P1大于1.00时(也即L0~L1正跳变结构),2 GHz基波输出功率会随着螺距P1增大而减小,二次谐波输出功率会随着螺距P1增大而增大,直至二次谐波抑制比大于0 dBc。图11(b)中,对于18 GHz频点,无论未加载L1段是否处于互作用放大区,L0~L1段的正跳变、负跳变和未跳变的高频慢波结构都会激励起大于50.00 dBm的饱和输出功率,当归一化螺距过大或过小时,饱和输出功率会低于未跳变的高频慢波结构。所以,未加载L1段的中高频带宽内的电磁波处于同步放大区或未处于同步放大区时,合适的螺距P1下,L0~L1段正跳变、负跳变和未跳变段对二次谐波都会有较好的抑制,且对高频段饱和输出功率有小幅度提升。
3.3 均匀磁场与周期磁场聚焦比较
本节中比较了均匀磁场与周期磁场聚焦下的结果,周期磁场的取值为布里渊磁场
BB 的√2 倍,均匀磁场取值实际上为布里渊磁场BB 。采用helix1-1螺距跳变设计,全频带内比较了同等激励下两种不同的聚焦方式的输出结果,如图12所示。均匀磁场相较于周期磁场聚焦方式,频带内整体输出功率都有所提高;两种方式对于谐波都有所抑制,均匀磁场聚焦对于2~4 GHz谐波抑制较好,周期磁场聚焦对于4~9 GHz谐波抑制较好。最初的设计中都会采用均匀磁场聚焦,但为了追求质量小,体积小,满足小型化设计要求,同时均匀磁场聚焦整体设计和调整都比较困难,实际应用都会采用周期永磁聚焦方式。图13中给出了在18 GHz下均匀磁场聚焦和周期磁场聚焦的电子轨迹随归一化纵向长度的变化。可以看出,均匀磁场聚焦下电子轨迹波动较小,当达到纵向归一化长度为0.6时发生电子群聚,进行了能量转换;而周期磁场聚焦电子注波动较大,虽然也可以很好地聚焦电子注,但注-波互作用效果不如均匀磁场聚焦方式,这也与理论是相吻合的。
3.4 仿真结果与分析
不断优化设计2~18 GHz行波管高频慢波结构参数,当处于18 GHz工作频点时,可以进一步对L3段和螺距P3微调优化。这样,在输出端部分加入渐变结构(如图5所示helix 1-2结构),能更进一步抑制低频段二次谐波,增加高频段饱和输出功率。这是因为宽带行波管相较于窄带行波管不同,采用螺距负渐变可以提高某一个频点的效率,而其余频点互作用效率会降低,同时部分频点会产生多次谐波,并不能依靠简单的“速度再同步”思想实现,而采用螺距正渐变的结构中,实际上谐波会有所抑制,从文献[19-20]中所设计的宽带行波管也得到了很好的验证。图14比较了这两种不同的高频慢波结构(如helix 1-1和helix 1-2),其全频带输出功率都大于50.00 dBm,二次谐波抑制比小于−3.00 dBc;helix 1-2结构中二次谐波有了明显的下降,整体优于−4.00 dBc,总谐波抑制比也有一定的下降,部分频点基波输出功率小幅下降。因此,通过渐变部分的设计能够实现谐波抑制比下降和高频段整体输出功率提升。
4. 结 论
本文通过引入新颖的色散组合技术,研究了2~18 GHz超宽带螺旋线行波管高频慢波结构和互作用特性。结果表明,在具有螺距正跳变或负跳变的正反常色散组合结构helix 1-1和helix 1-2中:1)当L1段与Li段比值在0.375~0.500时,2 GHz谐波比减小最多,比值小于0.375时18 GHz饱和输出功率得到提高;2)若给定L0段,正常色散段L1越长,2 GHz二次谐波比小于−13.00 dBc以下,基波功率从50.30 dBm增长至52.90 dBm,高频段功率仅减少0.500 dBm;3)当螺距P1与螺距P0之比在0.88~1.00时,虽然2 GHz二次谐波功率增加,但2 GHz基波饱和输出功率增加,同时18 GHz饱和输出功率的增加,为提高全频带内输出功率可以选取该螺距跳变方式。两种不同方案的高频慢波结构实现了全频带输出功率大于100 W,为超宽带大功率器件提供良好的理论基础。
-
表 1 基本参量
Table 1. The basic parameters
V0/V I0/A a/mm r0/mm 4500 0.18 0.72 0.288 表 2 高频慢波结构参量
Table 2. High frequency slow wave structure parameters
Vn/(°) Rl/mm Rs/mm W1/mm W2/mm Rc/mm 65 1.27 1.02 0.4 0.4 1.65 -
[1] Gilmour A S. 速调管、行波管、磁控管、正交场放大器和回旋管[M]. 丁耀根, 张兆传, 译. 北京: 国防工业出版社, 2012GilmourAS. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers and gyrotrons[M]. Ding Yaogen, Zhang Zhaochuan, trans. Beijing: National Defense Industry Press, 2012 [2] VED IPP. Rethinking what we know about vacuum electronic devices[J]. The Journal of Electronic Defense, 2019, 42(2): 1-4. [3] Levush B. The design and manufacture of vacuum electronic amplifiers: progress and challenges[C]//Proceedings of 2019 International Vacuum Electronics Conference. 2019: 1-5. [4] 李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:073001. (Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001 [5] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7. (Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7 [6] Seo W B, Kim H J, Joo J H, et al. Fabrication and experiments on a 6-18 GHz, vaned helix TWT amplifier[C]//Proceedings of 2006 IEEE International Vacuum Electronics Conference Held Jointly with 2006 IEEE International Vacuum Electron Sources. 2006: 187-188. [7] Ghosh T K, Challis A J, Tokeley A, et al. Design and development of 2 to 3 octave band helix mini-TWTs[C]//Proceedings of 2011 IEEE International Vacuum Electronics Conference. 2011. [8] Wei Yixue, Gan Yuan, Chen Yinxing, et al. A 50-W broadband mini-MPM for electronic countermeasure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2206-2211. doi: 10.1109/TED.2018.2791723 [9] 雷禄容, 袁欢, 刘振帮, 等. 宽带相对论速调管放大器模拟设计[J]. 强激光与粒子束, 2016, 28:023003. (Lei Lurong, Yuan Huan, Liu Zhenbang, et al. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 023003 doi: 10.11884/HPLPB201628.023003 [10] Sumathy M, Gupta S K, Kumar B, et al. Cold circuit analysis of a coupled-cavity slow wave structure for mm-wave TWT[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3024-3029. doi: 10.1109/TPS.2020.3015513 [11] 胡玉禄. 行波管注波互作用基础理论与CAD技术研究[D]. 成都: 电子科技大学, 2011: 55-75Hu Yulu. Study of beam wave interaction basic theory and CAD technique for traveling wave tube[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 55-75 [12] Frisoni M A. Theoretical design study of a 2-18 GHz bandwidth helix TWT (Traveling Wave Tube) amplifier[R]. BADC-TR-87-22, 1987. [13] 罗健. 行波管的正向设计理论及技术研究[D]. 成都: 电子科技大学, 2015: 15-30Luo Jian. Research on theory and forward design technology of TWTs[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 15-30 [14] Hu Yulu, Wang Yanmei, Yang Zhonghai, et al. Study the effect of positive dispersion in input circuit of broadband helix traveling wave tubes[C]//Proceedings of the IEEE 14th International Vacuum Electronics Conference. 2013. [15] Srivastava V, Carter R G, Ravinder B, et al. Design of helix slow-wave structures for high efficiency TWTs[J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2438-2443. doi: 10.1109/16.887034 [16] Xu Li, Yang Zhonghai, Li Bin, et al. High-frequency circuit simulator: an advanced three-dimensional finite-element electromagnetic-simulation tool for microwave tubes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1141-1151. doi: 10.1109/TED.2009.2016078 [17] 刘盛纲, 李宏福, 王文祥, 等. 微波电子学导论[M]. 北京: 国防工业出版社, 1995: 161-184Liu Shenggang, Li Hongfu, Wang Wenxiang, et al. Introduction to microwave electronics[M]. Beijing: National Defense Industry Press, 1995: 161-184 [18] 杜秉初, 汪健如. 电子光学[M]. 北京: 清华大学出版社, 2002: 400-422Du Bingchu, Wang Jianru. Electron optics[M]. Beijing: Tsinghua University Press, 2002: 400-422 [19] Ghosh T K, Challis A J, Jacob A, et al. Design of helix pitch profile for broadband traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1135-1140. doi: 10.1109/TED.2009.2015137 [20] Ghosh T K, Challis A J, Jacob A, et al. Improvements in performance of broadband helix traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2008, 55(2): 668-673. doi: 10.1109/TED.2007.913006 期刊类型引用(0)
其他类型引用(2)