留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Marx的任意极性方波脉冲电源设计

姜松 黄利飞 饶俊峰 王永刚 李孜

姜松, 黄利飞, 饶俊峰, 等. 基于Marx的任意极性方波脉冲电源设计[J]. 强激光与粒子束, 2022, 34: 055001. doi: 10.11884/HPLPB202234.210405
引用本文: 姜松, 黄利飞, 饶俊峰, 等. 基于Marx的任意极性方波脉冲电源设计[J]. 强激光与粒子束, 2022, 34: 055001. doi: 10.11884/HPLPB202234.210405
Jiang Song, Huang Lifei, Rao Junfeng, et al. Design of arbitrary polarity rectangular pulse power supply based on Marx[J]. High Power Laser and Particle Beams, 2022, 34: 055001. doi: 10.11884/HPLPB202234.210405
Citation: Jiang Song, Huang Lifei, Rao Junfeng, et al. Design of arbitrary polarity rectangular pulse power supply based on Marx[J]. High Power Laser and Particle Beams, 2022, 34: 055001. doi: 10.11884/HPLPB202234.210405

基于Marx的任意极性方波脉冲电源设计

doi: 10.11884/HPLPB202234.210405
基金项目: 上海市扬帆计划项目(19YF1435000)
详细信息
    作者简介:

    姜 松,jecifer@163.com

    通讯作者:

    饶俊峰,jfrao@usst.edu.cn

  • 中图分类号: TM832

Design of arbitrary polarity rectangular pulse power supply based on Marx

  • 摘要: 设计了一种基于Marx电路的方波脉冲电源,该电源采用磁环隔离驱动方案与全桥Marx电路相结合,实现了正极性、负极性和双极性高压方波脉冲的输出,解决了常规脉冲电源只能输出特定极性脉冲的限制。对电路的运行模式经行了理论分析,并搭建了16级实验样机。实验结果表明:在空载条件下,实现了频率1 kHz,幅值10 kV的正极性、负极性及双极性高压方波脉冲输出。其最小脉宽1 µs,极性可调。该脉冲电源结构紧凑,可以实现输出电压、脉宽、脉冲极性可调。最后使用该方波脉冲电源驱动平行板介质阻挡放电反应器。结果表明:该方波脉冲电源可以作为介质阻挡放电驱动源。
  • 图  1  Marx主电路

    Figure  1.  Marx circuit

    图  2  Marx主电路两级子模块

    Figure  2.  Two-stage sub-modules of Marx circuit

    图  3  传统控制方案时序图

    Figure  3.  Time sequence diagram of traditional control scheme

    图  4  改进不同脉冲极性控制时序图

    Figure  4.  Time sequence diagram of improved control signal

    图  5  驱动电路图

    Figure  5.  Drive circuit diagram

    图  6  实验硬件平台

    Figure  6.  Experimental hardware platform

    图  7  不同脉宽下输出脉冲波形

    Figure  7.  Output pulse waveform under different pulse widths

    图  8  不同极性下的输出电压波形

    Figure  8.  Output voltage waveforms under different polarity

    图  9  1kHz下输出电压波形

    Figure  9.  1 kHz output voltage waveforms

    图  10  不同极性脉冲下介质阻挡放电电压电流波形

    Figure  10.  Voltage and current waveforms of dielectric barrier discharge under different polarity pulses

    图  11  不同极性脉冲下介质阻挡放电

    Figure  11.  Dielectric barrier discharge under different polarity pulses

  • [1] Yang W X, Sun M X, Song H J, et al. A novel method to synthesize luminescent silicon carbide nanoparticles based on dielectric barrier discharge plasma[J]. J. Mater. Chem. C, 2020, 8(47): 16949-16956. doi: 10.1039/D0TC04658B
    [2] Iervolino G, Vaiano V, Palma V. Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor[J]. Separation and Purification Technology, 2019, 215: 155-162. doi: 10.1016/j.seppur.2019.01.007
    [3] Gershman S, Harreguy M B, Yatom S, et al. A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide[J]. Scientific Reports, 2021, 11: 4626. doi: 10.1038/s41598-021-84086-z
    [4] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(04):1339-1358. (MEI Danhua, FANG Zhi, SHAO Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(04): 1339-1358
    [5] Miao C, Liu F, Wang Q, et al. Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply[J]. The European Physical Journal D, 2018, 72: 57. doi: 10.1140/epjd/e2018-80575-3
    [6] Wang Q, Liu F, Miao C, et al. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Sci. Technol., 2018, 20: 035404. doi: 10.1088/2058-6272/aaa357
    [7] Liu S H, Neiger M. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses[J]. J. Phys. D:Appl. Phys., 2001, 34(11): 1632-1638. doi: 10.1088/0022-3727/34/11/312
    [8] Zhang L, Yang D Z, Wang W C, et al. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap[J]. J Appl Phys, 2014, 116: 113301. doi: 10.1063/1.4895982
    [9] Yuan D, Ding C, He Y, et al. Characteristics of dielectric barrier discharge ozone synthesis for different pulse modes[J]. Plasma Chemistry and Plasma Processing, 2017, 37(4): 1165-1173. doi: 10.1007/s11090-017-9793-y
    [10] 雷宇, 邱剑, 刘克富. 150kV全固态高压脉冲发生器设计[J]. 强激光与粒子束, 2012, 24(3):673-677. (Lei Yu, Qiu Jian, Liu Kefu. Design of 150 kV all-solid-state high voltage pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(3): 673-677 doi: 10.3788/HPLPB20122403.0673
    [11] Canacsinh H, Redondo L M, Silva J F. Marx-type solid-state bipolar modulator topologies: performance comparison[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2603-2610. doi: 10.1109/TPS.2012.2190944
    [12] 饶俊峰, 姜松, 李孜. 基于Marx和磁开关的方波脉冲电源的研制[J]. 强激光与粒子束, 2016, 28(05):136-140. (Rao Junfeng, Jiang Song, Li zi, et al. Rectangular pulse generator based on Marx and magnetic switch[J]. High Power Laser and Particle Beams, 2016, 28(05): 136-140 doi: 10.11884/HPLPB201628.055005
    [13] 葛劲伟, 姜松, 饶俊峰, 等. 全固态高压双极性方波脉冲叠加器的研制[J]. 高电压技术, 2019, 45(04):1305-1312. (Ge Jinwei, Jiang Song, Rao Junfeng, et al. Development of all-solid-state bipolar pulse adder with high voltage rectangular wave pulses output[J]. High Voltage Engineering, 2019, 45(04): 1305-1312
    [14] 魏新劳, 郭政良, 王浩然. 双极性高频高压方波脉冲电源研究述评[J]. 重庆大学学报, 2017, 40(06):36-46. (Wei Xinlao, Guo Zhengliang, Wang Haoran. Commentary on the research of bipolar high-frequency and high-voltage square wave pulse power supply[J]. Journal of Chongqing University, 2017, 40(06): 36-46
    [15] 李柳霞. 容性负载下全固态脉冲源的特性研究[D]. 复旦大学, 2013: 65-72

    Li Liuxia. Capacitive loads of all-solid-state pulse source characteristics research [D]. Fudan University, 2013: 65-72
    [16] Rao J F, Guo L Y, Liu H T, et al. Design of high-voltage square pulse generator based on cascade switches and time-delay driver[J]. IEEE Transactions on Plasma Science, 2019, 47(9): 4329-4334. doi: 10.1109/TPS.2019.2932457
    [17] Zhou Z W, Li Z, Rao J F, et al. A high-performance drive circuit for all solid-state marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
  • 加载中
图(11)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  340
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-12-20
  • 录用日期:  2022-02-22
  • 网络出版日期:  2022-03-02
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回