Effect of vacuum ultraviolet radiation on X-ETFE cable
-
摘要: 以航天器舱外用交联乙烯-四氟乙烯共聚物(X-ETFE)线缆为试验对象,采用5倍加速因子对X-ETFE线缆累计进行了8000等效太阳小时(ESH)真空紫外(VUV)辐照,并通过极限耐电压、绝缘材料电阻测试分析X-ETFE线缆电性能,采用FTIR和SEM表征X-ETFE材料分子结构和微观形貌,以此研究不同VUV辐照时间对X-ETFE线缆的影响。试验结果表明,随着VUV辐照时间的增加,材料表面累积了碳而发生暗化,线缆外观颜色逐渐变为深棕色;X-ETFE线缆的极限耐压和绝缘电阻呈总体下降趋势,但整体电性能水平未发生本质变化; X-ETFE材料在1628 cm−1处的吸收峰逐步增大,说明X-ETFE材料分子链中的−C=C−自由基团随辐照时间而增多,致使材料表面出现了微裂纹现象。
-
关键词:
- 交联乙烯-四氟乙烯线缆 /
- 真空紫外辐照 /
- 极限耐电压 /
- 绝缘电阻 /
- 微观结构
Abstract: Taking the cross-linked ethylene tetrafluoroethylene copolymer (X-ETFE) cable used outside the spacecraft as the test object, the X-ETFE cable was irradiated with 8000 equivalent solar hours (ESH) vacuum ultraviolet (VUV) with a 5-fold acceleration factor. The electrical properties of the X-ETFE cable were analyzed through the limit voltage resistance and insulation material resistance tests. The molecular structure and micro morphology of the X-ETFE material were characterized by FTIR and SEM, The effects of different VUV irradiation time on X-ETFE cable have been studied.. The experimental results show that with the increase of VUV irradiation time, carbon accumulates on the material surface and darkens, and the appearance color of the cable gradually changes to dark brown; The ultimate withstand voltage and insulation resistance of X-ETFE cable show an overall downward trend, but the overall electrical performance level has no substantial change; The absorption peak of X-ETFE material at 1628 cm−1 gradually increases, indicating that the −C=C− free group in the molecular chain of X-ETFE material increases with irradiation time, resulting in microcracks on the surface of the material.-
Key words:
- X-ETFE cable /
- VUV radiation /
- ultimate withstand voltage /
- insulation resistance /
- micro structure
-
表 1 实验样品表
Table 1. Test samples
No. VUV irradiation time/h length of sample/m 1# 0 2 2# 100 2 3# 500 2 4# 1000 2 5# 2000 2 6# 4000 2 7# 8000 2 表 2 VUV辐照设备参数指标
Table 2. VUV radiating test equipment parameter
project main indicators parameter near UV light source xenon lamp spectrum 200 nm~400 nm irradiation area maximum Φ150 mm irradiance 1353 W/m2~6765 W/m2 inhomogeneous irradiation better than ±5% irradiation stability ±3% far UV light source deuterium lamp (150 W) spectrum 115 nm~200 nm irradiation area not less than Φ150 mm irradiance maximum 27060 W/m2 other temperature control range of sample +10 ℃~+50 ℃ temperature of heat sink not higher than −25 ℃ vessel vacuum no load at room temperature is better than 3×10−3 Pa 表 3 不同VUV辐照时间后X-ETFE线缆极限电压值
Table 3. Limiting voltage of X-ETFE cable after different VUV radiation time
VUV radiation time/h withstand limit voltage/kV test result 0 28 no breakdown 100 22 breakdown 500 22 breakdown 1000 18.5 breakdown 2000 18 breakdown 4000 17 breakdown 8000 15.5 breakdown 表 4 不同VUV辐照时间后X-ETFE线缆绝缘电阻值
Table 4. Insulation resistance of X-ETFE cable after VUV radiation of different time
VUV radiation time/h insulation resistance/(MΩ·km) 0 12000 100 9900 500 10000 1000 10000 2000 9900 4000 10000 8000 7840 -
[1] 张永明, 李虹, 张恒. 含氟功能材料[M]. 北京: 化学工业出版社, 2008Zhang Yongming, Li Hong, Zhang Heng. Fluorine containing functional materials[M]. Beijing: Chemical Industry Press, 2008 [2] Drobny J G. Technology of fluoropolymers[M]. 2nd ed. Boca Raton: CRC Press, 2008. [3] 陈晓勇. 乙烯-四氟乙烯共聚物的辐照交联及辐照敏化剂研究[J]. 化学推进剂与高分子材料, 2011, 9(3):19-24 doi: 10.3969/j.issn.1672-2191.2011.03.004Chen Xiaoyong. Studies on irradiation crosslinking of ethylene-tetrafluoroethylene copolymer and irradiation promoter[J]. Chemical Propellants & Polymeric Materials, 2011, 9(3): 19-24 doi: 10.3969/j.issn.1672-2191.2011.03.004 [4] 王征, 张义, 焦美荣, 等. 空间站用线缆氟化物析出的影响因素研究[J]. 电子产品可靠性与环境试验, 2018, 36(1):8-13 doi: 10.3969/j.issn.1672-5468.2018.01.002Wang Zheng, Zhang Yi, Jiao Meirong, et al. Research on the influencing factors of fluoride precipitation in cable for space station[J]. Electronic Product Reliability and Environmental Testing, 2018, 36(1): 8-13 doi: 10.3969/j.issn.1672-5468.2018.01.002 [5] Dever J A, Bruckner E J, Rodriguez E. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1992. [6] Stiegman A E, Brinza D E, Aanderson M S, et al. An investigation of the degradation of fluorinated ethylene propylene (FEP) copolymer thermal blanketing materials aboard LDEF and in the laboratory[R]. N93-25078, 1993: 1-18. [7] Quiña P L D, Herrera L, Irurzun I M, et al. A capacitive model for dielectric breakdown in polymer materials[J]. Computational Materials Science, 2008, 44(2): 330-338. doi: 10.1016/j.commatsci.2008.03.029 [8] Ferreira G F L, De Figueiredo M T. Currents and charge profiles in electron beam irradiated samples under an applied voltage: exact numerical calculation and Sessler's conductivity approximation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(1): 137-147. doi: 10.1109/TDEI.2003.1176577 [9] Shiyama K, Fujita S. Dielectric and thermal properties of irradiated polyetheretherketone[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(3): 538-542. doi: 10.1109/94.933380 [10] Milyavskii V V. Radiation protection properties of dielectrics with space charge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(4): 507-511. doi: 10.1109/94.788751 [11] 李琳, 程敏, 刘文元, 等. 紫外辐照对聚醚酰亚胺薄膜介电性能的影响[J]. 强激光与粒子束, 2016, 28:064134 doi: 10.11884/HPLPB201628.064134Li Lin, Cheng Min, Liu Wenyuan, et al. Influence of ultraviolet irradiation on dielectric properties of polyetherimide film[J]. High Power Laser and Particle Beams, 2016, 28: 064134 doi: 10.11884/HPLPB201628.064134 [12] 黄睿, 叶焕英, 冯修敏, 等. 紫外辐照对偏光片聚乙烯醇膜的性能影响[J]. 合成材料老化与应用, 2018, 47(1):7-10Huang Rui, Ye Huanying, Feng Xiumin, et al. Performance influence of UV-exposure on polyvinyl alcohol polarizing film[J]. Synthetic Materials Aging and Application, 2018, 47(1): 7-10 [13] 顾页妮, 钱晓晨, 吕燕磊, 等. 真空紫外辐照对Lumogen薄膜损伤及光学性能的影响[J]. 光学仪器, 2021, 43(1):82-87Gu Yeni, Qian Xiaochen, Lyu Yanlei, et al. Effect of vacuum UV radiation on Lumogen film damage and optical properties[J]. Optical Instruments, 2021, 43(1): 82-87 [14] 沈自才, 李竑松, 张鹏嵩, 等. 空间紫外辐射高加速地面模拟技术[J]. 装备环境工程, 2021, 18(2):57-61Shen Zicai, Li Hongsong, Zhang Pengsong, et al. Highly accelerated ground simulation technology of space ultraviolet radiation[J]. Equipment Environmental Engineering, 2021, 18(2): 57-61 [15] Zhao Xiaohu, Shen Zhigang, Xing Yushan, et al. Experimental study of vacuum ultraviolet radiation effects and its synergistic effects with atomic oxygen on a spacecraft material-polytetrafluoroethylene[J]. Chinese Journal of Aeronautics, 2004, 17(3): 181-186. doi: 10.1016/S1000-9361(11)60235-5 [16] 彭桂荣, 甄良, 杨德庄, 等. 真空紫外线辐射对聚合物材料的作用[J]. 宇航材料工艺, 2001, 31(5):12-18 doi: 10.3969/j.issn.1007-2330.2001.05.004Peng Guirong, Zhen Liang, Yang Dezhuang, et al. Effects of vacuum ultraviolet on polymers[J]. Aerospace Materials & Technology, 2001, 31(5): 12-18 doi: 10.3969/j.issn.1007-2330.2001.05.004 [17] Bower D I. An introduction to polymer physics[M]. Cambridge: Cambridge University Press, 2002. [18] 李建喜, 单永东, 张聪, 等. 电子束辐照乙烯-四氟乙烯共聚物的化学稳定性[J]. 辐射研究与辐射工艺学报, 2015, 33:060301 doi: 10.11889/j.1000-3436.2015.rrj.33.060301Li Jianxi, Shan Yongdong, Zhang Cong, et al. Chemical stability of ethylene-tetra-fluoro-ethylene irradiated by electron beam[J]. Journal of Radiation Research and Radiation Processing, 2015, 33: 060301 doi: 10.11889/j.1000-3436.2015.rrj.33.060301 [19] 徐坚, 杨斌, 杨猛, 等. 空间紫外辐照对高分子材料破坏机理研究综述[J]. 航天器环境工程, 2011, 28(1):25-30 doi: 10.3969/j.issn.1673-1379.2011.01.005Xu Jian, Yang Bin, Yang Meng, et al. Mechanism of polymer property degradation in space UV radiation environment[J]. Spacecraft Environment Engineering, 2011, 28(1): 25-30 doi: 10.3969/j.issn.1673-1379.2011.01.005 [20] 曹丹, 王长进, 史丛丛, 等. 辐照乙烯-四氟乙烯共聚物的热老化性能[J]. 辐射研究与辐射工艺学报, 2020, 38(4):33-38Cao Dan, Wang Changjin, Shi Congcong, et al. Thermal aging properties of irradiated ethylene-tetrafluoroethylene copolymers[J]. Journal of Radiation Research and Radiation Processing, 2020, 38(4): 33-38