Study on grating feedback characteristics of distributed feedback quantum cascade laser
-
摘要: 为探究Bragg光栅结构对TM模反馈特性的影响,利用有限时域差分法对具有TM模的分布反馈(DFB)量子级联激光器Bragg光栅结构进行仿真研究。重点分析了侧向耦合光栅的光学特性以及光栅侧壁倾角对光栅反射谱、损耗的影响及原因,并探究了光栅刻蚀深度及占空比与TM模的耦合系数、损耗的关系。结果表明有效折射率是影响Bragg波长的主要因素,而光限制因子是不同周期的侧向耦合光栅结构耦合系数产生巨大差别的原因,当光栅侧壁倾角90°时镜面损耗最小。光栅周期、占空比、刻蚀深度与耦合系数的关系表明:这些参数不仅影响光栅的相对介电常数,也会对光限制因子产生作用,从而影响耦合系数的大小;耦合系数与刻蚀深度具有正比关系,大周期光栅耦合系数随占空比的变化率较小。对光栅光反馈特性的理论研究有利于提升对DFB量子级联激光器的认识,促进激光器性能的提升和发展。Abstract: The grating feedback characteristics of distributed feedback (DFB) quantum cascade lasers with TM mode were simulated by difference time domain method. Comparative analysis was mainly focused on the optical properties of lateral coupled grating and ridge waveguide grating. The causes of differences, the effects of side wall angle on reflection spectrum and loss of grating were also investigated. The results show that the main factor influencing the Bragg wavelength is the effective refractive index, the optical limiting factor is the reason for the great difference of coupling coefficient between the two grating structures, the specular loss is minimum when the side wall angle of the grating is 90°. The relationship between grating period, duty cycle, etching depth and the coupling coefficient shows that the parameters not only affect the relative dielectric constant of grating, but also affects the light limiting factor, thus affecting the coupling coefficient; the coupling coefficient is proportional to the etching depth, and the variation of the coupling coefficient with duty cycle is smaller. Theoretical research on grating optical feedback characteristics is beneficial to improve the understanding of DFB quantum cascade lasers and promote the improvement and development of laser performances.
-
Key words:
- quantum cascade laser /
- Bragg grating /
- distributed feedback /
- coupling coefficient /
- TM mode
-
表 1 外延结构
Table 1. Epitaxial layer structure
layer structure thickness/µm highly doped InP 1.00 InP 4.00 InGaAs 0.30 active region 2.67 InGaAs 0.30 InP 4.00 InP substrate − -
[1] Shu Hong, Suttinger M, Lyakh A, et al. Floquet-Bloch analysis for distributed feedback quantum cascade lasers with a non-rectangular top-metal grating profile[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7. [2] Sigler C, Wang Xiaodong, Mawst L J, et al. First-order grating TM coupling coefficients for distributed feedback quantum cascade lasers[J]. IEEE Journal of Quantum Electronics, 2018, 54: 2300207. [3] Babichev A V, Gladyshev A G, Filimonov A V, et al. Heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm[J]. Technical Physics Letters, 2017, 43(7): 666-669. doi: 10.1134/S1063785017070173 [4] Dang Jingmin, Yu Haiye, Sun Yujing, et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 2017, 82: 183-191. [5] Abramov P I, Budarin A S, Kuznetsov E V, et al. Quantum-cascade lasers in atmospheric optical communication lines: challenges and prospects (review)[J]. Journal of Applied Spectroscopy, 2020, 87(4): 579-600. doi: 10.1007/s10812-020-01041-y [6] Babichev A V, Gladyshev A G, Kurochkin A S, et al. Room temperature lasing of multi-stage quantum-cascade lasers at 8 μm wavelength[J]. Semiconductors, 2018, 52(8): 1082-1085. doi: 10.1134/S1063782618080031 [7] Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm[J]. Optics Express, 2016, 24(16): 18799-18806. doi: 10.1364/OE.24.018799 [8] Cui Xiaojuan, Yu Runqing, Chen Weidong, et al. Development of a quantum cascade laser-based sensor for environmental HONO monitoring in the mid-infrared at 8 μm[J]. Journal of Lightwave Technology, 2019, 37(11): 2784-2791. doi: 10.1109/JLT.2018.2876672 [9] Tittel F K, Allred J J, Cao Yingchun , et al. Quantum cascade laser-based sensor system for nitric oxide detection[C]//Proceedings of SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. 2015: 9370. [10] Wei Qianhe, Li Bincheng, Wang Jing, et al. Impact of residual water vapor on the simultaneous measurements of trace CH4 and N2O in air with cavity ring-down spectroscopy[J]. Atmosphere, 2021, 12: 221. doi: 10.3390/atmos12020221 [11] Deng Yu, Zhao Binbin, Wang Xingguang, et al. Narrow linewidth characteristics of interband cascade lasers[J]. Applied Physics Letters, 2020, 116: 201101. doi: 10.1063/5.0006823 [12] Golyak I S, Morozov A N, Svetlichnyi S I, et al. Identification of chemical compounds by the reflected spectra in the range of 5.3-12.8 μm using a tunable quantum cascade laser[J]. Russian Journal of Physical Chemistry B, 2019, 13(4): 557-564. doi: 10.1134/S1990793119040055 [13] Pierściński K, Kuźmicz A, Pierścińska D, et al. Optimization of cavity designs of tapered AlInAs/InGaAs/InP quantum cascade lasers emitting at 4.5 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25: 1901009. [14] Zhao Yue, Zhang Jinchuan, Jia Zhiwei, et al. Low power consumption distributed-feedback quantum cascade lasers operating in continuous-wave mode above 90 ℃ at λ ~ 7.2 μm[J]. Chinese Physics Letters, 2016, 33: 124201. doi: 10.1088/0256-307X/33/12/124201 [15] Briggs R M, Frez C, Fradet M, et al. Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth[J]. Optics Express, 2016, 24(13): 14589-14595. doi: 10.1364/OE.24.014589 [16] Zhou Wenjia, Wu Donghai, McClintock R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers[J]. Optica, 2017, 4(10): 1228-1231. doi: 10.1364/OPTICA.4.001228 [17] Zhuo Ning, Zhang Jinchuan, Liu Fengqi, et al. Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating[J]. IEEE Photonics Technology Letters, 2013, 25(11): 1039-1042. doi: 10.1109/LPT.2013.2257716 [18] Cheng F M, Zhang J C, Zhao Y, et al. Study on the wavelength detuning distributed feedback quantum cascade lasers[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(11): 7523-7526. doi: 10.1166/jnn.2018.16044 [19] Faist J, Gmachl C, Capasso F, et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672. doi: 10.1063/1.119208 [20] Chen C L. Foundations for guided-wave optics[M]. Hoboken: John Wiley & Sons, 2006. [21] Streifer W, Scifres D, Burnham R. TM-mode coupling coefficients in guided-wave distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 1976, 12(2): 74-78. doi: 10.1109/JQE.1976.1069108 [22] Virtanen H, Uusitalo T, Dumitrescu M. Simulation studies of DFB laser longitudinal structures for narrow linewidth emission[J]. Optical and Quantum Electronics, 2017, 49: 160. doi: 10.1007/s11082-017-0993-8