留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第四代同步辐射光源物理设计与优化

焦毅 白正贺

焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34: 104004. doi: 10.11884/HPLPB202234.220136
引用本文: 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34: 104004. doi: 10.11884/HPLPB202234.220136
Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004. doi: 10.11884/HPLPB202234.220136
Citation: Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004. doi: 10.11884/HPLPB202234.220136

第四代同步辐射光源物理设计与优化

doi: 10.11884/HPLPB202234.220136
基金项目: 国家自然科学基金项目(11922512, 11875259)
详细信息
    作者简介:

    焦 毅,jiaoyi@ihep.ac.cn

    通讯作者:

    白正贺,baizhe@ustc.edu.cn

  • 中图分类号: TL54+4

Physics design and optimization of the fourth-generation synchrotron light sources

  • 摘要: 近十年来,世界上开始大力发展第四代同步辐射光源——衍射极限储存环光源。目前我国正在建设或立项建设两台第四代同步辐射光源:高能同步辐射光源和合肥先进光源。从储存环磁聚焦结构设计与优化、束流注入与集体效应等方面,对第四代同步辐射光源的物理设计与优化进行了介绍;对国际范围内第四代储存环光源装置的研制情况进行了介绍。
  • 图  1  MAX IV的常规型7BA lattice[6]与ESRF-EBS的H7BA lattice[9]

    Figure  1.  MAX IV conventional 7BA lattice[6] and the ESRF-EBS H7BA lattice[9]

    图  2  SLS-2的LGB/RB单元lattice[19]

    Figure  2.  SLS-2 LGB/RB unit cell lattice [19]

    图  3  HEPS插入件亮度与动力学孔径数值优化的最终解(图中不同颜色表示不同的动力学孔径面积)

    Figure  3.  Final solutions of optimization of the HEPS brightness and dynamic aperture (different colors denote different dynamic aperture areas)

    图  4  HALF光源的脉冲非线性磁铁的磁场场形

    Figure  4.  Field profile of the pulsed nonlinear kicker of HALF

    图  5  以SLS及其升级装置SLS-2为例的第三代和第四代储存环光源真空室横向尺寸的比较(单位:mm)[45]

    Figure  5.  Comparison of vacuum chambers for SLS, a third-generation synchrotron light source,and for its fourth-generation upgrade SLS-2 (unit: mm)[45]

    表  1  目前世界上在建及运行的高能区第四代储存环光源的主要参数

    Table  1.   Main parameters of high-energy fourth-generation synchrotron light sources being in operation or under construction

    light
    source
    energy/
    GeV
    circumference/mnatural emittance/
    (pm·rad)
    momentum
    compaction/10−5
    energy loss per
    turn/MeV
    number of straight
    sections
    H/V β @
    long straight/m
    ESRF-EBS6.08441338.72.56326.9/2.7
    APS-U6.01103.641.74.02.74405.19/2.4
    HEPS6.01360.434.81.82.64488.18/5.0(2.56/2.31)
    下载: 导出CSV

    表  2  目前世界上主要的中低能区第四代储存环光源的设计参数(Elettra 2.0,Diamond-II和HALF的直线节数目包括长、中直线节)

    Table  2.   Main parameters of medium- and low-energy fourth-generation synchrotron light source designs (Elettra 2.0, Diamond-II and HALF have long and short straight sections in each lattice period)

    light
    source
    energy/GeVcircumference/mlatticenatural emittance/
    (pm·rad)
    number of straight
    sections
    momentum
    compaction/10−5
    natural damping
    time (H/V/L)/ms
    ALS-U2.0196.59BA10912207.7/14.4/12.7
    HALF2.2479.866BA8620+20927.2/37.7/23.4
    Elettra 2.02.4259.26BA21412+12125.5/9.1/6.8
    SLS-22.72887BA1581210.54.1/7.5/6.4
    SOLEIL-U2.75353.747BA-4BA81209.17.1/13.2/11.7
    MAX IV3.05287BA3282030.615.8/29.4/25.8
    Sirius3.0518.45BA2502016.416.9/22.0/12.9
    SKIF3.0476.147BA72167.69.2/17.9/17.0
    ILSF3.05285BA2702018.218.9/26.0/16.0
    Diamond-II3.5560.566BA15924+24119.5/18.1/16.4
    下载: 导出CSV
  • [1] Zhao Zhentang. Storage ring light sources[J]. Reviews of Accelerator Science and Technology, 2010, 3(1): 57-76. doi: 10.1142/S1793626810000361
    [2] Pellegrini C, Marinelli A, Reiche S. The physics of X-ray free-electron lasers[J]. Reviews of Modern Physics, 2016, 88: 015006. doi: 10.1103/RevModPhys.88.015006
    [3] Bilderback D H, Brock J D, Dale D S, et al. Energy recovery linac (ERL) coherent hard X-ray sources[J]. New Journal of Physics, 2020, 12: 035011.
    [4] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [5] Einfeld D, Schaper J, Plesko M. Design of a diffraction limited light source (DIFL)[C]//Proceedings Particle Accelerator Conference. Dallas, USA, 1995: 177-179.
    [6] Tavares P F, Leemann S C, Sjöström M, et al. The MAX IV storage ring project[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 862-877.
    [7] Martensson N, Eriksson M. The saga of MAX IV, the first multi-bend achromat synchrotron light source[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 97-104.
    [8] Liu L, Milas N, Mukai A H C, et al. The Sirius project[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 904-911.
    [9] Farvacque L, Carmignani N, Chavanne J, et al. A low-emittance lattice for the ESRF[C]//Proceedings of the 4th International Particle Accelerator Conference. Shanghai, China, 2013: 79-81.
    [10] Borland M, Sun Y, Sajaev V, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets[C]//Proceedings of NAPAC2016. Chicago, USA, 2016: 877-880.
    [11] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(Pt 6): 1611-1618.
    [12] Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021: 407-409.
    [13] 焦毅, 徐刚, 陈森玉, 等. 衍射极限储存环物理设计研究进展[J]. 强激光与粒子束, 2015, 27:045108 doi: 10.11884/HPLPB201527.045108

    Jiao Yi, Xu Gang, Chen Senyu, et al. Advances in physical design of diffraction-limited storage ring[J]. High Power Laser and Particle Beams, 2015, 27: 045108 doi: 10.11884/HPLPB201527.045108
    [14] Sands M. Physics of electron storage rings: an introduction[R]. SLAC-121, 1970.
    [15] Teng L C. Minimizing the emittance in designing the lattice of an electron storage ring[R]. Fermilab Report TM-1269, 1984.
    [16] Jiao Yi, Cai Yunhai, Chao A W. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance[J]. Physical Review Accelerators and Beams, 2011, 14: 054002. doi: 10.1103/PhysRevSTAB.14.054002
    [17] Nagaoka R, Wrulich A F. Emittance minimisation with longitudinal dipole field variation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575(3): 292-304.
    [18] Streun A. The anti-bend cell for ultralow emittance storage ring lattices[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 737: 148-154.
    [19] Streun A, Garvey T, Rivkin L, et al. SLS-2 – the upgrade of the Swiss light source[J]. Journal of Synchrotron Radiation, 2018, 25(Pt 3): 631-641.
    [20] Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [21] Jiao Yi, Xu Gang. PEPX-type lattice design and optimization for the High Energy Photon Source[J]. Chinese Physics C, 2015, 39: 067004. doi: 10.1088/1674-1137/39/6/067004
    [22] Steier C, Robin D, Nadolski L, et al. Measuring and optimizing the momentum aperture in a particle accelerator[J]. Physical Review E, 2002, 65: 056506. doi: 10.1103/PhysRevE.65.056506
    [23] Bengtsson J. The sextupole scheme for the Swiss light source (SLS): an analytic approach[R]. SLS Note 9/97, 1997.
    [24] Nadolski L, Laskar J. Review of single particle dynamics for third generation light sources through frequency map analysis[J]. Physical Review Special Topics–Accelerators and Beams, 2003, 6: 114801. doi: 10.1103/PhysRevSTAB.6.114801
    [25] Bengtsson J, Streun A, Singh B, et al. Control of the nonlinear dynamics for medium energy synchrotron light sources[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018: 4037-4041.
    [26] Bengtsson J, Streun A. Robust design strategy for SLS-2[R]. Technical Report SLS2-BJ84-001, 2017.
    [27] Borland M, Decker G, Emery L, et al. Lattice design challenges for fourth-generation storage-ring light sources[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 912-936.
    [28] Bai Zhenghe, Wang Lin. Study of multi-bend achromat lattices for the HALS diffraction-limited storage ring[C]//Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. Shanghai, China, 2018: 25-27.
    [29] Yang Lingyun, Li Yongjun, Guo Weiming, et al. Multiobjective optimization of dynamic aperture[J]. Physical Review Special Topics–Accelerators and Beams, 2011, 14: 054001. doi: 10.1103/PhysRevSTAB.14.054001
    [30] Borland M, Emery L, Sajaev V, et al. Multi-objective optimization of a lattice for potential upgrade of the advanced photon source[R]. Technical Report LS-319, 2010.
    [31] Bai Zhenghe, Wang Lin, Li Weimin, et al. Enlarging dynamic and momentum aperture by particle swarm optimization[C]//Proceedings of IPAC2011. San Sebastián, Spain, 2011: 948-950.
    [32] Huang Xiaobiao, Safranek J. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 757: 48-53.
    [33] Jiao Yi. Improving nonlinear performance of the HEPS baseline design with a genetic algorithm[J]. Chinese Physics C, 2016, 40: 077002. doi: 10.1088/1674-1137/40/7/077002
    [34] Jiao Yi, Xu Gang. Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms[J]. Chinese Physics C, 2017, 41: 027001. doi: 10.1088/1674-1137/41/2/027001
    [35] 万金宇, 孙正, 张相, 等. 机器学习在大型粒子加速器中的应用回顾与展望[J]. 强激光与粒子束, 2021, 33:094001 doi: 10.11884/HPLPB202133.210199

    Wan Jinyu, Sun Zheng, Zhang Xiang, et al. Machine learning applications in large particle accelerator facilities: review and prospects[J]. High Power Laser and Particle Beams, 2021, 33: 094001 doi: 10.11884/HPLPB202133.210199
    [36] 赵瑀, 李志平, 刘伟航, 等. 衍射极限储存环光源相关物理问题[J]. 科学通报, 2020, 65(24):2587-2600 doi: 10.1360/TB-2020-0165

    Zhao Yu, Li Zhiping, Liu Weihang, et al. Physics issues of the diffraction-limited storage ring light source[J]. Chinese Science Bulletin, 2020, 65(24): 2587-2600 doi: 10.1360/TB-2020-0165
    [37] Edelen A, Neveu N, Frey M, et al. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems[J]. Physical Review Accelerators and Beams, 2020, 23: 044601. doi: 10.1103/PhysRevAccelBeams.23.044601
    [38] Li Yongjun, Cheng Weixing, Yu Lihua, et al. Genetic algorithm enhanced by machine learning in dynamic aperture optimization[J]. Physical Review Accelerators and Beams, 2018, 21: 054601. doi: 10.1103/PhysRevAccelBeams.21.054601
    [39] Wan Jinyu, Chu P, Jiao Yi, et al. Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 946: 162683. doi: 10.1016/j.nima.2019.162683
    [40] Wan Jinyu, Chu P, Jiao Yi. Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics[J]. Physical Review Accelerators and Beams, 2020, 23: 081601. doi: 10.1103/PhysRevAccelBeams.23.081601
    [41] Takaki H, Nakamura N, Kobayashi Y, et al. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics–Accelerators and Beams, 2010, 13: 020705. doi: 10.1103/PhysRevSTAB.13.020705
    [42] Emery L, Borland M. Possible long-term improvements to the Advanced Photon Source[C]//Proceedings of the 2003 Particle Accelerator Conference. Portland, USA, 2003: 256-258.
    [43] Aiba M, Böge M, Marcellini F, et al. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings[J]. Physical Review Special Topics–Accelerators and Beams, 2015, 18: 020701. doi: 10.1103/PhysRevSTAB.18.020701
    [44] Gough C, Aiba M. Top-up injection with “anti-septum”[C]//Proceedings of the IPAC2017. Copenhagen, Denmark, 2017: 774-776.
    [45] Braun H, Garvey T, Jorg M, et al. SLS 2.0 storage ring technical design report[R]. PSI Bericht Nr. 21-02, 2021.
    [46] Chen Jinhui, Shi Hua, Wang Lei, et al. Strip-line kicker and fast pulser R&D for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 920: 1-6.
    [47] Jiang Bocheng, Zhao Zhentang, Tian Shuangqi, et al. Using a double-frequency RF system to facilitate on-axis beam accumulation in a storage ring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 814: 1-5.
    [48] Xu Gang, Chen Jinhui, Duan Zhe, et al. On-axis beam accumulation enabled by phase adjustment of a double-frequency RF system for diffraction-limited storage rings[C]//Proceedings of the IPAC2016. Busan, Korea, 2016: 2032-2035.
    [49] Jiang Shichang, Xu Gang. On-axis injection scheme based on a triple-frequency rf system for diffraction-limited storage rings[J]. Physical Review Accelerators and Beams, 2018, 21: 110701. doi: 10.1103/PhysRevAccelBeams.21.110701
    [50] Kim J, Jang G, Yoon M, et al. Injection scheme with deflecting cavity for a fourth-generation storage ring[J]. Physical Review Accelerators and Beams, 2019, 22: 011601. doi: 10.1103/PhysRevAccelBeams.22.011601
    [51] Yang Penghui, Li Wei, Ren Zhiliang, et al. Design of a diffraction-limited storage ring lattice using longitudinal gradient bends and reverse bends[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 990: 164968. doi: 10.1016/j.nima.2020.164968
    [52] Tarawneh H, Steier C, Falcone R, et al. ALS-II, a potential soft X-ray, diffraction limited upgrade of the advanced light source[J]. Journal of Physics: Conference Series, 2014, 493: 012020. doi: 10.1088/1742-6596/493/1/012020
    [53] Nagaoka R, Bane K L F. Collective effects in a diffraction-limited storage ring[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 937-960.
    [54] Carmignani N, Farvacque L, Liuzzo S M, et al. Linear and nonlinear optimizations for the ESRF upgrade lattice[C]//Proceedings of the 6th International Particle Accelerator Conference. Richmond, USA, 2015: 1422-1425.
    [55] Duarte H O C, Sanfelici L, Marques S R, et al. Design and impedance optimization of the Sirius BPM button[C]//Proceedings of the IBIC2013. Oxford, UK, 2013: 365-368.
    [56] Wang Na, Tian Saike, Wang Lei, et al. Impedance optimization and measurements of the injection stripline kicker[J]. Physical Review Accelerators and Beams, 2021, 24: 034401. doi: 10.1103/PhysRevAccelBeams.24.034401
    [57] Galayda J N. The advanced photon source[C]//Proceedings of the 1995 Particle Accelerator Conference and International Conference on High Energy Accelerators. Dallas, USA, 1995: 4-8.
    [58] Science and technology programme 2008-2017 (Purple book)[R]. ESRF, 2007.
    [59] Tanaka H, Kumagai N, Masaki M, et al. Top-up operation of SPring-8 storage ring with low-emittance optics[C]//Proceedings of the EPAC2006. Edinburgh, Scotland, 2006: 3359-3361.
    [60] Balewski K, Brefeld W, Decking W, et al. PETRA III: a new high brilliance synchrotron radiation source at DESY[C]//Proceedings of the EPAC 2004. Lucerne, Switzerland, 2004: 2302-2304.
    [61] Raimondi P, Carmignani N, Carver L R, et al. Commissioning of the hybrid multibend achromat lattice at the European Synchrotron Radiation Facility[J]. Physical Review Accelerators and Beams, 2021, 24: 110701. doi: 10.1103/PhysRevAccelBeams.24.110701
    [62] Hettel R. Status of the APS-U project[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021: 7-12.
    [63] Tanaka H, Ishikawa T, Goto S, et al. SPring-8 upgrade project[C]//Proceedings of the IPAC160. Busan, Korea, 2016: 2867-2870.
    [64] Schroer C G, Agapov I, Brefeld W, et al. PETRA IV: the ultralow-emittance source project at DESY[J]. Journal of Synchrotron Radiation, 2018, 25(Pt 5): 1277-1290.
    [65] Jiao Yi. Latest physics design of the HEPS accelerator[J]. Radiation Detection Technology and Methods, 2020, 4: 399. doi: 10.1007/s41605-020-00212-x
    [66] Jiao Yi, Chen Fusan, He Ping, et al. Modification and optimization of the storage ring lattice of the High Energy Photon Source[J]. Radiation Detection Technology and Methods, 2020, 4(4): 415-424. doi: 10.1007/s41605-020-00189-7
    [67] Tao Ye. Groundbreaking ceremony at the High Energy Photon Source in Beijing[J]. Synchrotron Radiation News, 2019, 32: 40. doi: 10.1080/08940886.2019.1654833
    [68] Liuzzo S M, Carmignani N, Chavanne J, et al. Optics adaptions for bending magnet beam lines at ESRF: short bend, 2-pole wiggler, 3-pole wiggler[C]//Proceedings of the IPAC’17. Copenhagen, Denmark, 2017: 666-669.
    [69] Duan Zhe, Chen Jinhui, GuoYuanyuan, et al. The swap-out injection scheme for the high energy photon source[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, Canada, 2018: 4178-4181.
    [70] Liu L, Alves M B, de Sá F H, et al. Sirius commissioning results and operation status[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021: 13-18.
    [71] Karantzoulis E, Carniel A, Castronovo D, et al. Elettra and Elettra 2.0[C]//Proceedings of the IPAC2021. Campinas, Brazil, 2021: 1474-1476.
    [72] Ghasem H, Martin I P S, Singh B, et al. Progress with the diamond-II storage ring lattice[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021: 3973-3976.
    [73] Loulergue A, Amorin D, Brunelle P, et al. CDR baseline lattice for the upgrade of SOLEIL[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021: 1485-1488.
    [74] Steier C, Allézy A, Anders A, et al. Status of the conceptual design of ALS-U[C]//Proceedings of the 8th International Particle Accelerator Conference. Copenhagen, Denmark, 2017: 4134-4137.
    [75] Baranov G, Bogomyagkov A, Morozov I, et al. Lattice optimization of a fourth-generation synchrotron radiation light source in Novosibirsk[J]. Physical Review Accelerators and Beams, 2021, 24: 120704. doi: 10.1103/PhysRevAccelBeams.24.120704
    [76] Ahmadi E, Jazayeri S M, Rahighi J. Characterizing and studying the nonlinear beam dynamics performance of Iranian Light Source Facility storage ring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927: 140-150. doi: 10.1016/j.nima.2019.01.078
    [77] Tordeux M A, Alexandre P, Ben El Fekih R, et al. Injection schemes for the SOLEIL upgrade[C]//Proceedings of the 12th International Particle Accelerator Conference. Campinas, Brazil, 2021: 796-798.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1951
  • HTML全文浏览量:  1035
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-06-09
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回