留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型核燃料对热管冷却反应堆燃耗性能的影响

秦凯文 杨波 王子鸣 钱云琛 刘豪杰 刘义保

秦凯文, 杨波, 王子鸣, 等. 不同类型核燃料对热管冷却反应堆燃耗性能的影响[J]. 强激光与粒子束, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156
引用本文: 秦凯文, 杨波, 王子鸣, 等. 不同类型核燃料对热管冷却反应堆燃耗性能的影响[J]. 强激光与粒子束, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156
Qin Kaiwen, Yang Bo, Wang Ziming, et al. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156
Citation: Qin Kaiwen, Yang Bo, Wang Ziming, et al. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 126001. doi: 10.11884/HPLPB202234.220156

不同类型核燃料对热管冷却反应堆燃耗性能的影响

doi: 10.11884/HPLPB202234.220156
基金项目: 国家自然科学基金项目(11965001); 江西省教育厅科技计划重点项目(GJJ170428); 江西省自然科学基金项目(20212BAB201004)
详细信息
    作者简介:

    秦凯文,2549820280@qq.com

    通讯作者:

    杨 波,Boyang@ecut.edu.cn

    刘义保,ybliu@ecut.edu.cn

  • 中图分类号: TL32

Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor

  • 摘要: 热管冷却反应堆采用固态反应堆设计理念,具有功率密度高、结构紧凑、固有安全性高等特点,在深空探索、深海勘探、偏远地区等场景中具有广阔的应用前景。核燃料作为热管冷却反应堆的重要组成部分,不同类型核燃料在堆芯燃耗分析时会呈现不同的中子学性能。基于美国爱达荷国家实验室(INL)提出的热管冷却反应堆INL Design A,利用清华大学蒙特卡罗中子输运程序RMC (Reactor Monte Carlo code)建立堆芯物理模型,选取UO2,(U0.9Pu0.1)O2,U-10Zr,U-8Pu-10Zr,UN,UC这6种核燃料开展燃耗计算,分析了不同核燃料、不同功率水平对热管冷却反应堆堆芯燃耗性能的影响。计算结果表明:在堆芯燃耗深度相同情况下(20.8 GW·d·t−1),装载U-8Pu-10Zr燃料的堆芯所需235U富集度最低(9.8%),具有较好的U-Pu增殖性能。堆芯功率处于5 MW的热管冷却反应堆,燃料中241Pu的存在不仅没起到增大堆芯燃耗深度的作用,反而导致堆芯剩余反应性和堆芯寿期末次锕系核素(MAs)的产量增大,影响反应堆的安全性与经济性。因此,对于装载含有Pu燃料的小功率长寿期热管冷却反应堆,需重点关注241Pu对堆芯燃耗性能的影响。
  • 图  1  RMC输出INL Design A几何结构图

    Figure  1.  Geometries of INL Design A by RMC

    图  2  不同核燃料堆芯keff随燃耗深度的变化

    Figure  2.  Core keff of different nuclear fuel varies with burnup depth

    图  3  堆芯keff随控制鼓旋转的变化

    Figure  3.  Core keff change with rotation of control drum

    图  4  不同功率反应堆堆芯燃耗

    Figure  4.  Reactor core burnup of different power

    图  5  不同功率下不含241Pu反应堆堆芯燃耗

    Figure  5.  Reactor core burnup without 241Pu at different powers

    图  6  U-Pu燃料循环燃耗链

    Figure  6.  Burnup chain of U-Pu cycle

    表  1  有效增值系数keff计算结果

    Table  1.   Calculation results of effective increment coefficient keff

    control conditioncalculated value of keff in this papercalculated value of keff of INLdifference of keff /10−5
    all poisons out1.028 82±0.000 331.028 2557
    control drums rotation 180°0.950 98±0.000 330.950 4256
    annular shutdown rod in0.945 89±0.000 330.945 5534
    solid shutdown in0.959 30±0.000 340.959 33−3
    all poisons in0.845 04±0.000 330.845 94−90
    下载: 导出CSV

    表  2  典型压水堆乏燃料中钚的含量

    Table  2.   Plutonium composition in a typical PWR spent fuel

    plutonium isotopemass fraction/%
    238Pu2.332
    239Pu56.873
    240Pu26.997
    241Pu6.105
    242Pu7.693
    下载: 导出CSV

    表  3  不同功率水平反应堆燃料Pu同位素分析

    Table  3.   Pu isotope analysis of reactor fuel at different power levels

    nuclidequantity of fissile nuclides and fissionable nuclides/kgdifference/kg
    at 5 MWat 200 MW
    238Pu8.31910.4222.103
    239Pu311.710311.134−0.576
    240Pu137.792138.6760.884
    241Pu3.53329.83526.302
    242Pu37.12937.4470.318
    下载: 导出CSV

    表  4  不同功率水平反应堆乏燃料分析

    Table  4.   Spent fuel analysis of reactor at different power levels

    spent nuclear fuelnuclidehalf-life/aquantity of fissile nuclides and fissionable nuclides/kgdifference/kg
    at 5 MWat 200 MW
    MAs237Np2.14×1062.710.712
    241Am432.227.462.1525.31
    243Am7 3801.801.720.08
    243Cm8 5003.72×10−403.72×10−4
    244Cm18.10.080.14−0.06
    245Cm28.55.43×10−44.25×10−41.18×10−4
    LLFPs99Tc2.11×1052.702.700
    129I1.27×1070.610.62−0.01
    135Cs2.30×1063.914.34−0.43
    下载: 导出CSV
  • [1] 余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4):1-8 doi: 10.13832/j.jnpe.2019.04.0001

    Yu Hongxing, Ma Yugao, Zhang Zhuohua, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8 doi: 10.13832/j.jnpe.2019.04.0001
    [2] 王傲, 申凤阳, 胡古, 等. 热管空间核反应堆电源的研究进展[J]. 核技术, 2020, 43:060002 doi: 10.11889/j.0253-3219.2020.hjs.43.060002

    Wang Ao, Shen Fengyang, Hu Gu, et al. A survey of heatpipe space nuclear reactor power supply[J]. Nuclear Techniques, 2020, 43: 060002 doi: 10.11889/j.0253-3219.2020.hjs.43.060002
    [3] McClure P R, Poston D I, Dasari V R, et al. Design of megawatt power level heat pipe reactors[R]. Los Alamos: Los Alamos National Laboratory, 2015.
    [4] Sterbentz J W, Werner J E, McKellar M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report[R]. Idaho Falls: Idaho National Laboratory, 2017.
    [5] Sterbentz J W, Werner J E, Hummel A J, et al. Preliminary assessment of two alternative core design concepts for the special purpose reactor[R]. Idaho Falls: Idaho National Laboratory, 2018.
    [6] 屈伸, 曹良志, 郑琪, 等. 热管堆高温数据库的制作及堆芯初步物理计算[J]. 现代应用物理, 2017, 8:041202 doi: 10.12061/j.issn.2095-6223.2017.041202

    Qu Shen, Cao Liangzhi, Zheng Qi, et al. Development of high-temperature nuclear database and preliminary physical computation of a heat pipe reactor[J]. Modern Applied Physics, 2017, 8: 041202 doi: 10.12061/j.issn.2095-6223.2017.041202
    [7] 李冠兴, 周邦新, 肖岷, 等. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学, 2019, 21(1):6-11

    Li Guanxing, Zhou Bangxin, Xiao Min, et al. Overall development strategy of China’s new-generation nuclear fuel[J]. Strategic Study of CAE, 2019, 21(1): 6-11
    [8] Fütterer M A, D’Agata E, Laurie M, et al. Next generation fuel irradiation capability in the High Flux Reactor Petten[J]. Journal of Nuclear Materials, 2009, 392(2): 184-191. doi: 10.1016/j.jnucmat.2009.03.030
    [9] Greenquist I, Powers J J. Sensitivity and uncertainty of the IFR-1 BISON benchmark[R]. Oak Ridge: Oak Ridge National Laboratory, 2022.
    [10] IAEA. Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data[M]. Vienna: IAEA, 2008: 92-110.
    [11] Wang Kan, Li Zeguang, She Ding, et al. RMC—A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [12] 刘晓波, 胡泽华. 蒙卡程序计算临界基准题测试检验ENDF/B-VIII. 0核数据库[J]. 强激光与粒子束, 2022, 34:026003 doi: 10.11884/HPLPB202234.210366

    Liu Xiaobo, Hu Zehua. Monte Carlo calculation of critical benchmarking models for testing ENDF/B-VIII. 0 nuclear data[J]. High Power Laser and Particle Beams, 2022, 34: 026003 doi: 10.11884/HPLPB202234.210366
    [13] 胡赟, 徐銤. 快堆金属燃料的发展[J]. 原子能科学技术, 2008, 42(9):810-815

    Hu Yun, Xu Mi. Development of metallic fuel for fast reactor[J]. Atomic Energy Science and Technology, 2008, 42(9): 810-815
    [14] Gao Yucui, Cao Liangzhi, Yang Yongwei, et al. Physical study of an ultra-long-life small modular fast reactor loaded with U-Pu-Zr fuel[J]. Annals of Nuclear Energy, 2020, 142: 107390. doi: 10.1016/j.anucene.2020.107390
    [15] Luzzi L, Cammi A, Di Marcello V, et al. Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor[J]. Nuclear Engineering and Design, 2014, 277: 173-187. doi: 10.1016/j.nucengdes.2014.06.032
    [16] Liu Bin, Wang Kai, Tu Jing, et al. Transmutation of minor actinides in the pressurized water reactors[J]. Annals of Nuclear Energy, 2014, 64: 86-92. doi: 10.1016/j.anucene.2013.09.042
    [17] Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 2004, 146(3): 291-318. doi: 10.13182/NSE04-A2411
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  368
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-09-26
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回