留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型化电感隔离型Marx发生器的研制

焦毅 姜松 王永刚 饶俊峰

焦毅, 姜松, 王永刚, 等. 小型化电感隔离型Marx发生器的研制[J]. 强激光与粒子束, 2023, 35: 055002. doi: 10.11884/HPLPB202335.220291
引用本文: 焦毅, 姜松, 王永刚, 等. 小型化电感隔离型Marx发生器的研制[J]. 强激光与粒子束, 2023, 35: 055002. doi: 10.11884/HPLPB202335.220291
Jiao Yi, Jiang Song, Wang Yonggang, et al. Development of miniaturized inductor-isolated Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 055002. doi: 10.11884/HPLPB202335.220291
Citation: Jiao Yi, Jiang Song, Wang Yonggang, et al. Development of miniaturized inductor-isolated Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 055002. doi: 10.11884/HPLPB202335.220291

小型化电感隔离型Marx发生器的研制

doi: 10.11884/HPLPB202335.220291
基金项目: 国家重点研发计划项目(2019YFC0119102); 上海市青年科技英才扬帆计划项目(20YF1431100); 上海理工大学-上海交通大学医学院医工交叉重点支持项目(2021005)
详细信息
    作者简介:

    焦 毅,15705183580@163.com

    通讯作者:

    饶俊峰, raojunfeng1985@163.com

  • 中图分类号: TM832

Development of miniaturized inductor-isolated Marx generator

  • 摘要: 随着脉冲功率技术的发展,纳秒脉冲电场被逐渐应用到等离子体水处理、不可逆电穿孔肿瘤消融等技术中。为了满足纳秒脉冲的应用需求,电源需要输出十几kV高压,拥有纳秒窄脉宽和快速的上升沿,同时尽量减小电源体积,降低成本。该纳秒脉冲电源采用电感隔离型Marx发生器结构,电路可以实现模块化叠加,电感隔离可以减少开关数量,抬升充电电压,以获得更高的电压输出。所设计的驱动电路仅需一路控制信号和一个直流供电模块,经功率放大和磁隔离后可同时控制所有放电管,该驱动电路结构简单、成本低、体积小,耐压水平高。所设计的24级电源样机,在50 kΩ阻性负载上,可输出0~14 kV电压,频率0.5~1 kHz,脉宽500 ns。该电源主电路的长宽高尺寸仅为23 cm×10 cm×12 cm。
  • 图  1  电感隔离型Marx主电路图

    Figure  1.  Main circuit of the inductor-isolated Marx generator

    图  2  驱动电路设计图

    Figure  2.  Design of driving circuit

    图  3  驱动电路的仿真原理图

    Figure  3.  Simulation schematic diagram of driving circuit

    图  4  门极驱动电压仿真波形

    Figure  4.  Simulation waveform of gate driving voltage

    图  5  电感电流的仿真波形

    Figure  5.  Simulation waveform of inductor current

    图  6  电容电压的仿真波形

    Figure  6.  Simulation waveform of capacitor voltage

    图  7  电源实物图

    Figure  7.  Photo of power supply

    图  8  输出电压14 kV重复频率1 kHz的电压波形

    Figure  8.  Voltage waveform of 14 kV pulses at the frequency of 1 kHz

    图  9  不同输出电压的波形

    Figure  9.  Waveforms of different output voltages

    表  1  不同频率下的输出电压

    Table  1.   Simulated output voltage at different frequencies

    No. frequency/kHz output voltage/kV
    1 0.1 2.0
    2 0.5 2.2
    3 1 2.3
    4 5 2.6
    5 10 2.7
    下载: 导出CSV

    表  2  电压输出结果

    Table  2.   Experimental results of voltage output

    No. input voltage/V output voltage/kV
    1 120 4
    2 250 8
    3 320 10
    4 400 12
    5 515 14
    下载: 导出CSV
  • [1] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201 doi: 10.3788/HPLPB20142603.30201

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (VI) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201
    [2] 江伟华. 高重复频率脉冲功率技术及其应用: (7)主要技术问题和未来发展趋势[J]. 强激光与粒子束, 2015, 27:010201 doi: 10.11884/HPLPB201527.010201

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (VII) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27: 010201 doi: 10.11884/HPLPB201527.010201
    [3] 姚陈果, 米彦, 李成祥, 等. 纳秒级陡脉冲电场诱导癌细胞凋亡的实验及作用机理研究[J]. 中国生物医学工程学报, 2008, 27(5):739-744 doi: 10.3969/j.issn.0258-8021.2008.05.020

    Yao Chenguo, Mi Yan, Li Chengxiang, et al. The effects of nanosecond pulsed electric field on apoptosis of human ovarian carcinoma cell line SKOV3 and its mechanism[J]. Chinese Journal of Biomedical Engineering, 2008, 27(5): 739-744 doi: 10.3969/j.issn.0258-8021.2008.05.020
    [4] 何天帅, 谭焜, 孙倩倩, 等. 不可逆电穿孔肿瘤消融器械发展现状[J]. 中国医疗器械杂志, 2021, 45(6):655-661 doi: 10.3969/j.issn.1671-7104.2021.06.014

    He Tianshuai, Tan Kun, Sun Qianqian, et al. Development status of irreversible electric perforated tumor ablation device[J]. Chinese Journal of Medical Instrumentation, 2021, 45(6): 655-661 doi: 10.3969/j.issn.1671-7104.2021.06.014
    [5] Beebe S J, Schoenbach K H. Nanosecond pulsed electric fields: a new stimulus to activate intracellular signaling[J]. Journal of Biomedicine and Biotechnology, 2005, 4(2005): 297-300.
    [6] Yao Chenguo, Hu Xiaoqian, Mi Yan, et al. Window effect of pulsed electric field on biological cells[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(5): 1259-1266. doi: 10.1109/TDEI.2009.5293936
    [7] Tang Tao, Wang Fei, Kuthi A, et al. Diode opening switch based nanosecond high voltage pulse generators for biological and medical applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 878-883. doi: 10.1109/TDEI.2007.4286519
    [8] Akiyama M, Sakugawa T, Hosseini S H R, et al. High-performance pulsed-power generator controlled by FPGA[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2588-2592. doi: 10.1109/TPS.2010.2042463
    [9] Yao Chenguo, Zhang Ximing, Guo Fei, et al. FPGA-controlled all-solid-state nanosecond pulse generator for biological applications[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2366-2372. doi: 10.1109/TPS.2012.2188908
    [10] 嵇保健, 王若冰, 洪峰, 等. 基于Marx电路的纳秒级高压脉冲电源设计[J]. 高电压技术, 2016, 42(12):3758-3762

    Ji Baojian, Wang Ruobing, Hong Feng, et al. Design of nanosecond high-voltage pulsed power source based on Marx generator[J]. High Voltage Engineering, 2016, 42(12): 3758-3762
    [11] Baek J W, Ryu M H, Yoo D W. High voltage pulse generator using boost converter array[C]//IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02. 2002: 395-399.
    [12] dos Santos K P, Neto T R F, Cruz C M T. Voltage impulse generator using boost converter array applied in electrical grounding systems[C]//2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC). 2015: 1-5.
    [13] Baek J W, Yoo D W, Rim G H, et al. Solid state Marx generator using series-connected IGBTs[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1198-1204. doi: 10.1109/TPS.2005.852409
    [14] 李盈. 软磁材料高频磁化特性和损耗特性分析[J]. 机电信息, 2019(8):60-61

    Li Ying. Analysis of high frequency magnetization and loss characteristics of soft magnetic materials[J]. Mechanical and Electrical Information, 2019(8): 60-61
    [15] 饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002 doi: 10.11884/HPLPB202133.210332

    Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 doi: 10.11884/HPLPB202133.210332
    [16] 刘金涛. 便携式脉冲发生器可靠性技术研究[D]. 成都: 电子科技大学, 2010: 9-18

    Liu Jintao. Research on reliability technology of portable pulse generator[D]. Chengdu: University of Electronic Science and Technology of China, 2010: 9-18
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  854
  • HTML全文浏览量:  278
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2023-01-10
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回