Analysis and prediction of electromagnetic interference behavior level in power distribution network of UAV positioning system
-
摘要: 电源分配网络是无人机定位系统工作的基础单元,也是电磁干扰薄弱环节,电源分配网络(PDN)传导耦合干扰效应是导致定位系统故障的主要原因。为了提高定位系统电磁干扰敏感度预测模型的精度,基于泰勒级数对非线性系统的描述方法,将泰勒级数行为级模型系数表征为与干扰频率相关的函数,建立无人机定位系统PDN电磁干扰响应预测模型,分析预测PDN在受干扰情况下的非线性直流偏置电压。研究结果表明:在250~400 MHz电磁干扰范围内,基于泰勒级数的PDN电磁干扰响应预测模型可以对PDN在电磁干扰作用下的非线性直流偏置进行准确预测,预测误差在3%以内。Abstract: Power distribution network is the basic unit of unmanned aerial vehicle (UAV) positioning system, but also the weak link of electromagnetic interference (EMI). The conduction coupling interference effect of power distribution network (PDN) is the main cause of positioning system failure. To improve the accuracy of positioning system sensitivity of electromagnetic interference prediction model, based on the Taylor series description method for nonlinear systems, the Taylor series behavior level model coefficient is characterized as interference frequency related function, thus a UAV positioning system PDN electromagnetic interference response prediction model is established, which analyzes and predicts PDN’s nonlinear dc bias voltage under the circumstance of interference. The results show that the Taylor series based PDN EMI response prediction model can accurately predict the nonlinear DC bias of PDN under 250−400 MHz EMI, and the prediction error is within 3%.
-
表 1 电源分配网络EMI响应理论与实测误差对比表
Table 1. Comparison between theoretical and measured values of EMI response in power distribution network
forward
power/dBminterference
frequency/MHzDC component
measurement value/VDC component
predicted value/Verror/% −36.7 250 3.29 3.2005 2.72 −33.2 250 3.26 3.2003 1.83 −30.1 250 3.19 3.1999 0.31 −38.0 310 3.13 3.1205 0.30 −34.9 310 3.17 3.1200 1.57 −31.3 310 3.06 3.1200 1.96 −38.3 400 2.98 2.9899 0.33 −37.5 400 2.98 2.9898 0.33 −39.4 400 2.99 2.9900 $ 5.2 \times {10^{ - 4}} $ -
[1] Greenwood W W, Lynch J P, Zekkos D. Applications of UAVs in civil infrastructure[J]. Journal of Infrastructure Systems, 2019, 25: 04019002. doi: 10.1061/(ASCE)IS.1943-555X.0000464 [2] Zhan Yilong, Chen Pengchao, Xu Weicheng, et al. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution[J]. Biosystems Engineering, 2022, 216: 32-45. doi: 10.1016/j.biosystemseng.2022.01.016 [3] Sang Xuejia, Leng Xiaopeng, Ran Xiangjin, et al. A virtual 3D geological library based on UAV and SFM: application for promoting teaching and research on geological specimen and heritage online[J]. Geoheritage, 2022, 14: 43. doi: 10.1007/s12371-021-00615-2 [4] 张涛, 陈亚洲, 田庆民, 等. 某型无人机连续波电磁辐照效应研究[J]. 微波学报, 2014, 30(3):19-22 doi: 10.14183/j.cnki.1005-6122.2014.03.004Zhang Tao, Chen Yazhou, Tian Qingmin, et al. Continuous-wave electromagnetic radiation effects of UAV[J]. Journal of Microwaves, 2014, 30(3): 19-22 doi: 10.14183/j.cnki.1005-6122.2014.03.004 [5] 杜宝舟, 陈亚洲, 高万峰, 等. 基于注入法的某型无人机数据链电磁效应研究[J]. 高电压技术, 2018, 44(10):3322-3327 doi: 10.13336/j.1003-6520.hve.20180925023Du Baozhou, Chen Yazhou, Gao Wanfeng, et al. Research on electromagnetic effect of unmanned aerial vehicle data link based on injection method[J]. High Voltage Engineering, 2018, 44(10): 3322-3327 doi: 10.13336/j.1003-6520.hve.20180925023 [6] 张庆龙, 王玉明, 程二威, 等. 导航接收机带外电磁干扰的效应规律及预测方法研究[J]. 系统工程与电子技术, 2021, 43(9):2588-2593 doi: 10.12305/j.issn.1001-506X.2021.09.27Zhang Qinglong, Wang Yuming, Cheng Erwei, et al. Investigation on the effect law and prediction method of out-of-band electromagnetic interference in navigation receiver[J]. Systems Engineering and Electronics, 2021, 43(9): 2588-2593 doi: 10.12305/j.issn.1001-506X.2021.09.27 [7] 张江南, 何勇, 潘绪超, 等. 无人机宽带高功率电磁脉冲易损性分析[J]. 弹箭与制导学报, 2020, 40(1):110-115,120 doi: 10.15892/j.cnki.djzdxb.2020.01.022Zhang Jiangnan, He Yong, Pan Xuchao, et al. Vulnerability analysis of UAV against mesoband electromagnetic pulse[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1): 110-115,120 doi: 10.15892/j.cnki.djzdxb.2020.01.022 [8] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001 doi: 10.11884/HPLPB201931.180365Zhao Tongcheng, Yu Daojie, Zhou Dongfang et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365 [9] 余道杰, 贺凯, 郭柏森, 等. 无人机定位系统辐照干扰失效全过程与机理分析[J]. 强激光与粒子束, 2023, 34:023002Yu Daojie, He Kai, Guo Baisen, et al. Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system[J]. High Power Laser and Particle Beams, 2023, 34: 023002 [10] Nuriev M G, Gizatullin R M, Gizatullin Z M. Physical modeling of electromagnetic interference in unmanned aerial vehicle under action of the electric transport contact network[J]. Russian Aeronautics, 2018, 61(2): 293-298. doi: 10.3103/S1068799818020204 [11] Lafon F, Maurice O, De-Daran F. ICEM – ICIM Modeling and exploitation for Bus transceivers applications[C]//EMC COMPO 2004. 2004. [12] Ayed A, Dubois T, Levant J L, et al. Immunity measurement and modeling of an ADC embedded in a microcontroller using RFIP technique[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 955-962. doi: 10.1109/TEMC.2015.2422140 [13] 周长林, 王振义, 刘统, 等. 基于BP神经网络的低压差线性稳压器电磁干扰损伤模型[J]. 高电压技术, 2016, 42(3):973-979 doi: 10.13336/j.1003-6520.hve.20160310005Zhou Changlin, Wang Zhenyi, Liu Tong, et al. Low dropout linear regulator’s electromagnetic interference damage model based on BP neural network[J]. High Voltage Engineering, 2016, 42(3): 973-979 doi: 10.13336/j.1003-6520.hve.20160310005 [14] Ma Jitong, Liu Hao, Peng Chen, et al. Unauthorized broadcasting identification: A deep LSTM recurrent learning approach[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 5981-5983. doi: 10.1109/TIM.2020.3008988 [15] Wu Qimeng, Wei Ming. A mathematical expression for air ESD current waveform using BP neural network[J]. Journal of Electrostatics, 2013, 71(2): 125-129. doi: 10.1016/j.elstat.2012.12.008 [16] 王伟. 开关电流电路行为级模型方法研究[D]. 上海: 复旦大学, 2003Wang Wei. Research on behavior level model method of switching current circuit[D]. Shanghai: Fudan University, 2003 [17] 蒋佳. 高速电路电源分配网络噪声抑制技术研究[D]. 西安: 西安电子科技大学, 2021Jiang Jia. Research on noise suppression in power distribution network of high-speed circuit[D]. Xi’an: Xidian University, 2021