留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机定位系统电源分配网络电磁干扰行为级分析与预测

余道杰 雷顺天 贺凯 张霞 郭柏森 柴梦娟

余道杰, 雷顺天, 贺凯, 等. 无人机定位系统电源分配网络电磁干扰行为级分析与预测[J]. 强激光与粒子束, 2023, 35: 053001. doi: 10.11884/HPLPB202335.220352
引用本文: 余道杰, 雷顺天, 贺凯, 等. 无人机定位系统电源分配网络电磁干扰行为级分析与预测[J]. 强激光与粒子束, 2023, 35: 053001. doi: 10.11884/HPLPB202335.220352
Yu Daojie, Lei Shuntian, He Kai, et al. Analysis and prediction of electromagnetic interference behavior level in power distribution network of UAV positioning system[J]. High Power Laser and Particle Beams, 2023, 35: 053001. doi: 10.11884/HPLPB202335.220352
Citation: Yu Daojie, Lei Shuntian, He Kai, et al. Analysis and prediction of electromagnetic interference behavior level in power distribution network of UAV positioning system[J]. High Power Laser and Particle Beams, 2023, 35: 053001. doi: 10.11884/HPLPB202335.220352

无人机定位系统电源分配网络电磁干扰行为级分析与预测

doi: 10.11884/HPLPB202335.220352
基金项目: 国家自然科学基金项目(61871405)
详细信息
    作者简介:

    余道杰,yudj2003@163.com

    通讯作者:

    贺 凯,1400062702@pku.edu.cn

  • 中图分类号: TN972

Analysis and prediction of electromagnetic interference behavior level in power distribution network of UAV positioning system

  • 摘要: 电源分配网络是无人机定位系统工作的基础单元,也是电磁干扰薄弱环节,电源分配网络(PDN)传导耦合干扰效应是导致定位系统故障的主要原因。为了提高定位系统电磁干扰敏感度预测模型的精度,基于泰勒级数对非线性系统的描述方法,将泰勒级数行为级模型系数表征为与干扰频率相关的函数,建立无人机定位系统PDN电磁干扰响应预测模型,分析预测PDN在受干扰情况下的非线性直流偏置电压。研究结果表明:在250~400 MHz电磁干扰范围内,基于泰勒级数的PDN电磁干扰响应预测模型可以对PDN在电磁干扰作用下的非线性直流偏置进行准确预测,预测误差在3%以内。
  • 图  1  行为级模型原理图

    Figure  1.  Schematic diagram of behavior level model

    图  2  定位系统电源分配网络结构实物图

    Figure  2.  Structure of the power distribution network of UAV positioning system

    图  3  基于泰勒级数的非线性系统行为级模型原理图

    Figure  3.  Behavior level model of nonlinear system based on Taylor series

    图  4  电源分配网络EMI响应测试电路实物图

    Figure  4.  Physical diagram of EMI response test circuit of PDN

    图  5  电源分配网络EMI响应测试原理图

    Figure  5.  Schematic diagram of EMI response test for PDN

    图  6  电源分配网络EMI响应测试流程图

    Figure  6.  Flow chart of EMI response test of PDN

    图  7  泰勒级数行为级响应预测模型系数与干扰频率关系图

    Figure  7.  Relationship between the coefficients of Taylor series behavior-level response prediction model and interference frequency

    表  1  电源分配网络EMI响应理论与实测误差对比表

    Table  1.   Comparison between theoretical and measured values of EMI response in power distribution network

    forward
    power/dBm
    interference
    frequency/MHz
    DC component
    measurement value/V
    DC component
    predicted value/V
    error/%
    −36.72503.293.20052.72
    −33.22503.263.20031.83
    −30.12503.193.19990.31
    −38.03103.133.12050.30
    −34.93103.173.12001.57
    −31.33103.063.12001.96
    −38.34002.982.98990.33
    −37.54002.982.98980.33
    −39.44002.992.9900$ 5.2 \times {10^{ - 4}} $
    下载: 导出CSV
  • [1] Greenwood W W, Lynch J P, Zekkos D. Applications of UAVs in civil infrastructure[J]. Journal of Infrastructure Systems, 2019, 25: 04019002. doi: 10.1061/(ASCE)IS.1943-555X.0000464
    [2] Zhan Yilong, Chen Pengchao, Xu Weicheng, et al. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution[J]. Biosystems Engineering, 2022, 216: 32-45. doi: 10.1016/j.biosystemseng.2022.01.016
    [3] Sang Xuejia, Leng Xiaopeng, Ran Xiangjin, et al. A virtual 3D geological library based on UAV and SFM: application for promoting teaching and research on geological specimen and heritage online[J]. Geoheritage, 2022, 14: 43. doi: 10.1007/s12371-021-00615-2
    [4] 张涛, 陈亚洲, 田庆民, 等. 某型无人机连续波电磁辐照效应研究[J]. 微波学报, 2014, 30(3):19-22 doi: 10.14183/j.cnki.1005-6122.2014.03.004

    Zhang Tao, Chen Yazhou, Tian Qingmin, et al. Continuous-wave electromagnetic radiation effects of UAV[J]. Journal of Microwaves, 2014, 30(3): 19-22 doi: 10.14183/j.cnki.1005-6122.2014.03.004
    [5] 杜宝舟, 陈亚洲, 高万峰, 等. 基于注入法的某型无人机数据链电磁效应研究[J]. 高电压技术, 2018, 44(10):3322-3327 doi: 10.13336/j.1003-6520.hve.20180925023

    Du Baozhou, Chen Yazhou, Gao Wanfeng, et al. Research on electromagnetic effect of unmanned aerial vehicle data link based on injection method[J]. High Voltage Engineering, 2018, 44(10): 3322-3327 doi: 10.13336/j.1003-6520.hve.20180925023
    [6] 张庆龙, 王玉明, 程二威, 等. 导航接收机带外电磁干扰的效应规律及预测方法研究[J]. 系统工程与电子技术, 2021, 43(9):2588-2593 doi: 10.12305/j.issn.1001-506X.2021.09.27

    Zhang Qinglong, Wang Yuming, Cheng Erwei, et al. Investigation on the effect law and prediction method of out-of-band electromagnetic interference in navigation receiver[J]. Systems Engineering and Electronics, 2021, 43(9): 2588-2593 doi: 10.12305/j.issn.1001-506X.2021.09.27
    [7] 张江南, 何勇, 潘绪超, 等. 无人机宽带高功率电磁脉冲易损性分析[J]. 弹箭与制导学报, 2020, 40(1):110-115,120 doi: 10.15892/j.cnki.djzdxb.2020.01.022

    Zhang Jiangnan, He Yong, Pan Xuchao, et al. Vulnerability analysis of UAV against mesoband electromagnetic pulse[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1): 110-115,120 doi: 10.15892/j.cnki.djzdxb.2020.01.022
    [8] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001 doi: 10.11884/HPLPB201931.180365

    Zhao Tongcheng, Yu Daojie, Zhou Dongfang et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365
    [9] 余道杰, 贺凯, 郭柏森, 等. 无人机定位系统辐照干扰失效全过程与机理分析[J]. 强激光与粒子束, 2023, 34:023002

    Yu Daojie, He Kai, Guo Baisen, et al. Failure process and mechanism of irradiation interference in unmanned aerial vehicle positioning system[J]. High Power Laser and Particle Beams, 2023, 34: 023002
    [10] Nuriev M G, Gizatullin R M, Gizatullin Z M. Physical modeling of electromagnetic interference in unmanned aerial vehicle under action of the electric transport contact network[J]. Russian Aeronautics, 2018, 61(2): 293-298. doi: 10.3103/S1068799818020204
    [11] Lafon F, Maurice O, De-Daran F. ICEM – ICIM Modeling and exploitation for Bus transceivers applications[C]//EMC COMPO 2004. 2004.
    [12] Ayed A, Dubois T, Levant J L, et al. Immunity measurement and modeling of an ADC embedded in a microcontroller using RFIP technique[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 955-962. doi: 10.1109/TEMC.2015.2422140
    [13] 周长林, 王振义, 刘统, 等. 基于BP神经网络的低压差线性稳压器电磁干扰损伤模型[J]. 高电压技术, 2016, 42(3):973-979 doi: 10.13336/j.1003-6520.hve.20160310005

    Zhou Changlin, Wang Zhenyi, Liu Tong, et al. Low dropout linear regulator’s electromagnetic interference damage model based on BP neural network[J]. High Voltage Engineering, 2016, 42(3): 973-979 doi: 10.13336/j.1003-6520.hve.20160310005
    [14] Ma Jitong, Liu Hao, Peng Chen, et al. Unauthorized broadcasting identification: A deep LSTM recurrent learning approach[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 5981-5983. doi: 10.1109/TIM.2020.3008988
    [15] Wu Qimeng, Wei Ming. A mathematical expression for air ESD current waveform using BP neural network[J]. Journal of Electrostatics, 2013, 71(2): 125-129. doi: 10.1016/j.elstat.2012.12.008
    [16] 王伟. 开关电流电路行为级模型方法研究[D]. 上海: 复旦大学, 2003

    Wang Wei. Research on behavior level model method of switching current circuit[D]. Shanghai: Fudan University, 2003
    [17] 蒋佳. 高速电路电源分配网络噪声抑制技术研究[D]. 西安: 西安电子科技大学, 2021

    Jiang Jia. Research on noise suppression in power distribution network of high-speed circuit[D]. Xi’an: Xidian University, 2021
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  625
  • HTML全文浏览量:  218
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2023-02-24
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回