留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径片状放大器片箱腔内气体吹扫过程模拟

强永发 吴文龙 刘建国 王振国 陈林 林东晖 傅学军 蒋学君 刘勇 王琳 姚轲

强永发, 吴文龙, 刘建国, 等. 大口径片状放大器片箱腔内气体吹扫过程模拟[J]. 强激光与粒子束, 2023, 35: 062001. doi: 10.11884/HPLPB202335.220354
引用本文: 强永发, 吴文龙, 刘建国, 等. 大口径片状放大器片箱腔内气体吹扫过程模拟[J]. 强激光与粒子束, 2023, 35: 062001. doi: 10.11884/HPLPB202335.220354
Qiang Yongfa, Wu Wenlong, Liu Jianguo, et al. Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 062001. doi: 10.11884/HPLPB202335.220354
Citation: Qiang Yongfa, Wu Wenlong, Liu Jianguo, et al. Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 062001. doi: 10.11884/HPLPB202335.220354

大口径片状放大器片箱腔内气体吹扫过程模拟

doi: 10.11884/HPLPB202335.220354
基金项目: 中国工程物理研究院激光聚变研究中心青年人才基金项目(RCFPD6-2022-7)
详细信息
    作者简介:

    强永发,yfqiang@zju.edu.cn

    通讯作者:

    王振国,wangzhenguo_82@163.com

  • 中图分类号: TN248.1;O368

Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier

  • 摘要: 为更快速地置换片状放大器片箱内部的气体、带走片箱内部因氙灯辐照产生的μm级气溶胶颗粒,以延长钕玻璃增益介质使用寿命,提出了几种不同的片箱隔板气体流道设计并对其吹扫效果进行对比。基于计算流体力学手段和分散相模型,求解了片箱腔内的吹扫流场并模拟了微米级粒子污染物的吹扫过程。片箱隔板采用开孔设计,通过对比分析发现,不同开孔孔径和排列方式的片箱吹扫效果差异明显。当开孔孔径为ϕ14 mm、且上下隔板都采用整齐排列的圆形通孔时,片箱内的气体压力损失更小(424.3 Pa)且吹扫达到百级的时间更短(205 s)。最后片箱吹扫实验显示了采用该结构的片箱其腔内吹扫达到百级的时间为2~3 min。
  • 图  1  片状放大器模型及简化后片箱模型

    Figure  1.  Preliminary model and simplified model of slab house in slab amplifier

    图  2  不同网格数量流出粒子总数变化趋势

    Figure  2.  Total particles flowing out of slab cassette under different numbers of grids

    图  3  片箱计算模型网格划分

    Figure  3.  Meshing of slab cassette model

    图  4  隔板开孔排列方式示意图

    Figure  4.  Schematic of hole arrangements on the baffle

    图  5  隔板圆孔排列方式

    Figure  5.  Circular hole arrangements on the baffle

    图  6  不同时刻粒子污染物在箱体内分布示意图

    Figure  6.  Schematic of aerosol particle concentration at different purging time

    图  7  隔板不同开孔方式吹扫曲线

    Figure  7.  Purging curves of baffles with different hole

    图  8  不同开孔方式片箱内空间流线对比

    Figure  8.  Streamline of different hole opening ways in slab cassette space

    图  9  不同截面速度云图及流线图(Case2)

    Figure  9.  Velocities and streamlines at different cross sections of slab cassette (Case2)

    图  11  不同截面速度云图及流线图(Case4)

    Figure  11.  Velocities and streamlines at different cross sections of slab cassette (Case4)

    图  10  不同截面速度云图及流线图(Case3)

    Figure  10.  Velocities and streamlines at different cross sections of slab cassette (Case3)

    图  12  污染物颗粒随时间变化曲线

    Figure  12.  Concentration change of contaminant particles with time

    表  1  隔板开孔方式计算模拟条件及结果

    Table  1.   Calculation conditions and results of different holes opening ways

    Caseinlet
    pressure/Pa
    inlet
    velocity/(m/s)
    outlet
    pressure/Pa
    differential
    pressure/Pa
    time
    spent/s
    notes
    Case1103325.815.0102863462248type 1, 16 slot holes with a seam
    Case2103325.815.0102845.6480.2223type 2, 16 slot holes with a seam, “V” type
    Case3103325.815.0102929396.8422type 3, 20 mm through holes (top and bottom)
    Case4103325.815.0102927.8398268type 3, 20 mm holes, through (top), staggered (bottom)
    Case5103325.515.0102709.4616.1205type 1, 16 slot holes with a wider seam
    Case6103325.515.0102620705.5365type 1, 16 slot holes with a narrower seam
    Case7103325.515.0102955.2370.3425type 4, 20 mm through holes (top and bottom)
    Case8103325.515.0102957.8367.7405type 4, 20 mm holes, through (top), staggered (bottom)
    Case9103325.515.0102901.2424.3205type 4, 14 mm through holes (top and bottom)
    Case10103325.815.0102853.1472.7247type 4, 14 mm holes, through (top), staggered (bottom)
    下载: 导出CSV
  • [1] Burnham A K, Horvath J A, Letts S A, et al. Achieving and maintaining cleanliness in NIF amplifiers[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1998: 609-620.
    [2] Honig J. Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers[J]. Optical Engineering, 2004, 43(12): 2904-2911. doi: 10.1117/1.1815320
    [3] Glass A J, Guenther A H. Laser induced damage of optical elements–a status report[J]. Applied Optics, 1973, 12(4): 637-649. doi: 10.1364/AO.12.000637
    [4] 於海武, 郑万国, 唐军, 等. 高功率激光放大器片腔洁净度实验研究[J]. 强激光与粒子束, 2001, 13(3):272-276

    Yu Haiwu, Zheng Wangguo, Tang Jun, et al. Investigation of slab cavity cleanliness of high power laser amplifiers[J]. High Power Laser and Particle Beams, 2001, 13(3): 272-276
    [5] Honig J. Offline slab damage experiments comparing air and nitrogen purge[R]. NIF-0070328, 2001: 22-29.
    [6] Honig J, Ravizza D. Nova retrospective and possible implications for NIF[R]. NIF-0110227, 1999.
    [7] 景峰, 彭志涛, 朱启华, 等. 高功率固体激光驱动器的优化设计[J]. 强激光与粒子束, 2000, 12(s1):117-121

    Jing Feng, Peng Zhitao, Zhu Qihua, et al. Design optimization of high power solid-state lasers for ICF driver[J]. High Power Laser and Particle Beams, 2000, 12(s1): 117-121
    [8] 江梦春, 朱健强, 刘志刚, 等. 钕玻璃片状放大器玻璃腔的概念设计[J]. 光子学报, 2016, 45:1114001 doi: 10.3788/gzxb20164511.1114001

    Jiang Mengchun, Zhu Jianqiang, Liu Zhigang, et al. Conceptual design for glass cavity in Nd: glass slab amplifier[J]. Acta Photonica Sinica, 2016, 45: 1114001 doi: 10.3788/gzxb20164511.1114001
    [9] 程晓锋, 苗心向, 陈远斌, 等. 神光-Ⅲ主机激光装置片状放大器洁净控制进展[J]. 强激光与粒子束, 2012, 24(1):1-2

    Cheng Xiaofeng, Miao Xinxiang, Chen Yuanbin, et al. Development on cleanliness control of slab amplifiers for Shenguang-Ⅲ laser driver[J]. High Power Laser and Particle Beams, 2012, 24(1): 1-2
    [10] Lowdermilk W H. Status of the National Ignition Facility project[C]//Proceedings of SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 16-37.
    [11] Spaeth M L, Manes K R, Honig J. Cleanliness for the NIF 1ω laser amplifiers[J]. Fusion Science and Technology, 2016, 69(1): 250-264. doi: 10.13182/FST14-861
    [12] 程晓锋, 王洪彬, 苗心向, 等. 高功率固体激光驱动器污染控制及片状放大器洁净度改进[J]. 强激光与粒子束, 2013, 25(5):1147-1151 doi: 10.3788/HPLPB20132505.1147

    Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, et al. Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(5): 1147-1151 doi: 10.3788/HPLPB20132505.1147
    [13] 杨晓伟, 刘志刚, 任志远, 等. 高功率激光片状放大器片腔内流场模拟及优化[J]. 中国激光, 2016, 43:0901002 doi: 10.3788/CJL201643.0901002

    Yang Xiaowei, Liu Zhigang, Ren Zhiyuan, et al. Simulation and optimization of internal flow field in high power laser slab amplifiers[J]. Chinese Journal of Lasers, 2016, 43: 0901002 doi: 10.3788/CJL201643.0901002
    [14] Ren Zhiyuan, Zhu Jianqiang, Liu Zhigang, et al. Optimizing the cleanliness in multi-segment disk amplifiers based on vector flow schemes[J]. High Power Laser Science and Engineering, 2018, 6: e1. doi: 10.1017/hpl.2017.36
    [15] 张攀政, 冯滔, 谢静, 等. 间断多次氮气吹扫法提高片状放大器在线洁净度研究[J]. 中国激光, 2018, 45:0401014 doi: 10.3788/CJL201845.0401014

    Zhang Panzheng, Feng Tao, Xie Jing, et al. Disk amplifier on-line cleanliness improvement achieved by intermittent nitrogen gas purge[J]. Chinese Journal of Lasers, 2018, 45: 0401014 doi: 10.3788/CJL201845.0401014
    [16] 万阳. 反射镜箱动态吹扫数值模拟与试验研究[D]. 重庆: 重庆大学, 2017

    Wan Yang. The numerical simulation and experiment research of the reflect mirror trunk transient blow[D]. Chongqing: Chongqing University, 2017
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  210
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 修回日期:  2023-03-02
  • 录用日期:  2023-01-02
  • 网络出版日期:  2023-02-24
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回