Development of 2.94 μm room temperature CW Er:YAG laser technology
-
摘要: 研制了一种结构简单的LD端面泵浦2.94 μm Er:YAG连续激光器。该激光器采用双端键合YAG端帽方式降低了晶体的端面温度。泵浦源采用小芯径的输出光纤和非球面镜耦合系统,减小了小泵浦光斑在晶体中的发散速度,并提高了泵浦均匀性。当泵浦光波长为969.7 nm时,Er:YAG晶体前段对泵浦光的吸收较弱,因此激光器增益介质前端热聚集效应得到了缓解。通过热像仪在实验中对键合和非键合Er:YAG晶体端面温度进行观测对比,并使用COMSOL软件对激光器热分布进行了模拟分析,证明了上述措施对减小高掺杂Er:YAG晶体热效应的有效性。最终成功实现了155 mW的2.94 μm连续激光输出。另外还观测到激光器输出波长随泵浦功率增加的红移现象并对其在能级跃迁层面进行了理论解释。
-
关键词:
- 2.94 μm连续激光器 /
- Er:YAG激光器 /
- 泵浦波长 /
- 非球面耦合 /
- 键合晶体
Abstract: In this paper, we report a simple structure, room-temperature operation, LD end-pumped 2.94 μm Er:YAG continuous wave laser. The laser uses double-ended bonded YAG end caps to reduce the end-surface temperature of the crystal. The pump source uses a small core diameter output fiber and an aspheric mirror coupling system, which reduces the dispersion rate of small pump spots in the crystal and therefore improves pumping uniformity. When the pump light wavelength is 969.7 nm, the absorption of pump light in the front section of Er:YAG crystal is weak, accordingly the thermal aggregation effect of the front end of the laser gain medium is mitigated. We observed and compared the temperature of the end faces of bonded and non-bonded Er:YAG crystals with a thermal imaging camera, simulated the thermal distribution using COMSOL software, and proved the effectiveness of the above measures in reducing the thermal effect of highly doped Er:YAG crystal. We finally succeeded in achieving a continuous laser output of 2.94 μm at 155 mW. We also observed the output wavelength’s red-shift phenomenon with the pump power increase and explained it theoretically at the energy transfer level.-
Key words:
- 2.94 μm CW laser /
- Er:YAG laser /
- pump wavelength /
- aspherical coupling mirror /
- bonding crystals
-
表 1 泵浦波长随冷却温度的变化
Table 1. Pump wavelength with different cooling temperature
temperature/℃ wavelength/nm 18 964.8 24 967.4 30 969.7 36 972.2 -
[1] Zharikov E V, Zhekov V I, Kulevskii L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μ[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039-1040. doi: 10.1070/QE1975v004n08ABEH011147 [2] 方聪, 王思博, 惠勇凌, 等. 掺铒中红外激光器的进展[J]. 激光与光电子学进展, 2019, 56:180002Fang Cong, Wang Sibo, Hui Yongling, et al. Progress on erbium-doped mid-infrared laser[J]. Laser & Optoelectronics Progress, 2019, 56: 180002 [3] Xu Zhi, Wang Pengyuan, Liu Wanfa, et al. 2.94 μm diode side pumped Er:YAG laser[C]//Proceedings of SPIE 10254. 2017: 91-96. [4] Voronov A A, Kozlovskii V I, Korostelin Y V, et al. Passive Q-switching of the diode-pumped Er: YAG laser cavity with the Q-switch based on the Fe2+: ZnSe crystal[J]. Bulletin of the Lebedev Physics Institute, 2010, 37(6): 169-172. doi: 10.3103/S1068335610060035 [5] Dinerman B J, Moulton P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145. doi: 10.1364/OL.19.001143 [6] Chen D W, Fincher C L, Rose T S, et al. Diode-pumped 1-W continuous-wave Er: YAG 3-µm laser[J]. Optics Letters, 1999, 24(6): 385-387. doi: 10.1364/OL.24.000385 [7] Ye Xianlin, Liu Zhengyi, Zhang Song, et al. High efficiency and high beam quality Er: YSGG mid-infrared continuous-wave laser[J]. Infrared Physics & Technology, 2022, 127: 104427. [8] Ye Xianlin, Xu Xiafei, Ren Huaijin, et al. Study of LD side-pumped two-rod Er: YSGG mid-infrared laser with 61-W output power[J]. Optics Communications, 2022, 507: 127608. doi: 10.1016/j.optcom.2021.127608 [9] Bowman S R, Lynn J G, Searles S K, et al. Power scaling of diode-pumped 2 micron lasers[C]//Proceedings of the LEOS'93. 1993: 692. [10] Li T, Zhao S Z, Zhuo Zhuang, et al. Passively mode-locked YVO4/Nd: YVO4 composite crystal green laser with a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2010, 6(1): 30-33. [11] Clarkson W A. Thermal effects and their mitigation in end-pumped solid-state lasers[J]. Journal of Physics D: Applied Physics, 2001, 34(16): 2381-2395. doi: 10.1088/0022-3727/34/16/302 [12] 徐赛. LD泵浦3微米Er固体激光器输出特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 30-35Xu Sai. Studies on output performance of 3 micron band Er-doped solid state lasers pumped by LD[D]. Harbin: Harbin Institute of Technology, 2015: 30-35 [13] Kawase H, Yasuhara R. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er: YAP crystal at room temperature[J]. Optics Express, 2019, 27(9): 12213-12220. doi: 10.1364/OE.27.012213 [14] Yao Weichao, Uehara H, Kawase H, et al. Highly efficient Er: YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 2020, 28(13): 19000-19007. doi: 10.1364/OE.395802 [15] Yao Weichao, Uehara H, Tokita S, et al. LD-pumped 2.8 μm Er: Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14: 012001. doi: 10.35848/1882-0786/abce9a [16] Sang Youbao, Liu Dong, Xia Xusheng, et al. A multi-wavelength pulsed mid-infrared laser based on Er: YAG[J]. Optics Communications, 2021, 485: 126667. doi: 10.1016/j.optcom.2020.126667