留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.94 μm室温连续Er:YAG激光器的研制

刘政邑 叶先林 张淞 魏星斌 任怀瑾 王卫民

刘政邑, 叶先林, 张淞, 等. 2.94 μm室温连续Er:YAG激光器的研制[J]. 强激光与粒子束, 2023, 35: 071007. doi: 10.11884/HPLPB202335.220391
引用本文: 刘政邑, 叶先林, 张淞, 等. 2.94 μm室温连续Er:YAG激光器的研制[J]. 强激光与粒子束, 2023, 35: 071007. doi: 10.11884/HPLPB202335.220391
Liu Zhengyi, Ye Xianlin, Zhang Song, et al. Development of 2.94 μm room temperature CW Er:YAG laser technology[J]. High Power Laser and Particle Beams, 2023, 35: 071007. doi: 10.11884/HPLPB202335.220391
Citation: Liu Zhengyi, Ye Xianlin, Zhang Song, et al. Development of 2.94 μm room temperature CW Er:YAG laser technology[J]. High Power Laser and Particle Beams, 2023, 35: 071007. doi: 10.11884/HPLPB202335.220391

2.94 μm室温连续Er:YAG激光器的研制

doi: 10.11884/HPLPB202335.220391
基金项目: 中国工程物理研究院创新发展基金项目
详细信息
    作者简介:

    刘政邑,15927397317@163.com

    通讯作者:

    魏星斌, wishingbeing@hotmail.com

  • 中图分类号: TN248.1

Development of 2.94 μm room temperature CW Er:YAG laser technology

  • 摘要: 研制了一种结构简单的LD端面泵浦2.94 μm Er:YAG连续激光器。该激光器采用双端键合YAG端帽方式降低了晶体的端面温度。泵浦源采用小芯径的输出光纤和非球面镜耦合系统,减小了小泵浦光斑在晶体中的发散速度,并提高了泵浦均匀性。当泵浦光波长为969.7 nm时,Er:YAG晶体前段对泵浦光的吸收较弱,因此激光器增益介质前端热聚集效应得到了缓解。通过热像仪在实验中对键合和非键合Er:YAG晶体端面温度进行观测对比,并使用COMSOL软件对激光器热分布进行了模拟分析,证明了上述措施对减小高掺杂Er:YAG晶体热效应的有效性。最终成功实现了155 mW的2.94 μm连续激光输出。另外还观测到激光器输出波长随泵浦功率增加的红移现象并对其在能级跃迁层面进行了理论解释。
  • 图  1  Er:YAG激光器实验装置图

    Figure  1.  Experimental setup of Er:YAG laser

    图  2  晶体前端面温度分布

    Figure  2.  Temperature distribution of the front surface of the crystal

    图  3  键合/非键合晶体温度分布曲线

    Figure  3.  Temperature distribution curves of bonded/non-bonded crystal

    图  4  晶体内部温度分布剖面模拟图

    Figure  4.  Simulated temperature distribution profile

    图  5  泵浦光吸收和温度分布曲线

    Figure  5.  Pump light absorption and temperature distribution curves

    图  6  输出功率和光束质量

    Figure  6.  Output power and beam quality

    图  7  不同输出功率时的光谱

    Figure  7.  Spectra at different output power

    图  8  Stark能级分布

    Figure  8.  Stark energy level distribution

    表  1  泵浦波长随冷却温度的变化

    Table  1.   Pump wavelength with different cooling temperature

    temperature/℃ wavelength/nm
    18 964.8
    24 967.4
    30 969.7
    36 972.2
    下载: 导出CSV
  • [1] Zharikov E V, Zhekov V I, Kulevskii L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μ[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039-1040. doi: 10.1070/QE1975v004n08ABEH011147
    [2] 方聪, 王思博, 惠勇凌, 等. 掺铒中红外激光器的进展[J]. 激光与光电子学进展, 2019, 56:180002

    Fang Cong, Wang Sibo, Hui Yongling, et al. Progress on erbium-doped mid-infrared laser[J]. Laser & Optoelectronics Progress, 2019, 56: 180002
    [3] Xu Zhi, Wang Pengyuan, Liu Wanfa, et al. 2.94 μm diode side pumped Er:YAG laser[C]//Proceedings of SPIE 10254. 2017: 91-96.
    [4] Voronov A A, Kozlovskii V I, Korostelin Y V, et al. Passive Q-switching of the diode-pumped Er: YAG laser cavity with the Q-switch based on the Fe2+: ZnSe crystal[J]. Bulletin of the Lebedev Physics Institute, 2010, 37(6): 169-172. doi: 10.3103/S1068335610060035
    [5] Dinerman B J, Moulton P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145. doi: 10.1364/OL.19.001143
    [6] Chen D W, Fincher C L, Rose T S, et al. Diode-pumped 1-W continuous-wave Er: YAG 3-µm laser[J]. Optics Letters, 1999, 24(6): 385-387. doi: 10.1364/OL.24.000385
    [7] Ye Xianlin, Liu Zhengyi, Zhang Song, et al. High efficiency and high beam quality Er: YSGG mid-infrared continuous-wave laser[J]. Infrared Physics & Technology, 2022, 127: 104427.
    [8] Ye Xianlin, Xu Xiafei, Ren Huaijin, et al. Study of LD side-pumped two-rod Er: YSGG mid-infrared laser with 61-W output power[J]. Optics Communications, 2022, 507: 127608. doi: 10.1016/j.optcom.2021.127608
    [9] Bowman S R, Lynn J G, Searles S K, et al. Power scaling of diode-pumped 2 micron lasers[C]//Proceedings of the LEOS'93. 1993: 692.
    [10] Li T, Zhao S Z, Zhuo Zhuang, et al. Passively mode-locked YVO4/Nd: YVO4 composite crystal green laser with a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2010, 6(1): 30-33.
    [11] Clarkson W A. Thermal effects and their mitigation in end-pumped solid-state lasers[J]. Journal of Physics D: Applied Physics, 2001, 34(16): 2381-2395. doi: 10.1088/0022-3727/34/16/302
    [12] 徐赛. LD泵浦3微米Er固体激光器输出特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 30-35

    Xu Sai. Studies on output performance of 3 micron band Er-doped solid state lasers pumped by LD[D]. Harbin: Harbin Institute of Technology, 2015: 30-35
    [13] Kawase H, Yasuhara R. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er: YAP crystal at room temperature[J]. Optics Express, 2019, 27(9): 12213-12220. doi: 10.1364/OE.27.012213
    [14] Yao Weichao, Uehara H, Kawase H, et al. Highly efficient Er: YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 2020, 28(13): 19000-19007. doi: 10.1364/OE.395802
    [15] Yao Weichao, Uehara H, Tokita S, et al. LD-pumped 2.8 μm Er: Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14: 012001. doi: 10.35848/1882-0786/abce9a
    [16] Sang Youbao, Liu Dong, Xia Xusheng, et al. A multi-wavelength pulsed mid-infrared laser based on Er: YAG[J]. Optics Communications, 2021, 485: 126667. doi: 10.1016/j.optcom.2020.126667
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  284
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-02-27
  • 录用日期:  2023-02-27
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回