留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型回旋加速器全自动化磁场测量和精密垫补平台研制

关镭镭 李明 崔涛 贾先禄 张天爵 安世忠 黄鹏 王飞

关镭镭, 李明, 崔涛, 等. 小型回旋加速器全自动化磁场测量和精密垫补平台研制[J]. 强激光与粒子束, 2022, 34: 084003. doi: 10.11884/HPLPB202234.210514
引用本文: 关镭镭, 李明, 崔涛, 等. 小型回旋加速器全自动化磁场测量和精密垫补平台研制[J]. 强激光与粒子束, 2022, 34: 084003. doi: 10.11884/HPLPB202234.210514
Guan Leilei, Li Ming, Cui Tao, et al. Development of a fully automated magnetic field measurement and shimming platform for small cyclotrons[J]. High Power Laser and Particle Beams, 2022, 34: 084003. doi: 10.11884/HPLPB202234.210514
Citation: Guan Leilei, Li Ming, Cui Tao, et al. Development of a fully automated magnetic field measurement and shimming platform for small cyclotrons[J]. High Power Laser and Particle Beams, 2022, 34: 084003. doi: 10.11884/HPLPB202234.210514

小型回旋加速器全自动化磁场测量和精密垫补平台研制

doi: 10.11884/HPLPB202234.210514
详细信息
    作者简介:

    关镭镭,guanll_1988@126.com

    通讯作者:

    李 明,393054642@qq.com

  • 中图分类号: TL54

Development of a fully automated magnetic field measurement and shimming platform for small cyclotrons

  • 摘要: 针对核医学诊疗对PET医用放射性核素的需求,中国原子能科学研究院正在开展PET医用小型回旋加速器的产业化研究。磁场测量和垫补是回旋加速器生产中的必经环节,小型回旋加速器结构紧凑实现磁场测量仪的全自动化控制是一个难点,解决常规垫补方法加工成本高和周期长的问题是产业化生产的关键。本文详细介绍小型回旋加速器全自动化磁场测量和精密垫补平台的研制,通过多台小型回旋加速器的磁场测量和垫补实践,发展一套快速磁场测量和垫补流程,实现全自动化测量方法缩短磁场测量周期,采用精密垫补算法减少垫补次数。在保证磁场测量和垫补工作高效高质量完成的条件下,极大降低了时间和加工成本,为小型回旋加速器的产业化生产打下基础。目前,中国原子能科学研究院已经完成多台小型回旋加速器的商业化落地。
  • 图  1  14 MeV医用回旋加速器

    Figure  1.  14 MeV medical cyclotron

    图  2  磁场测量和垫补工艺流程图

    Figure  2.  Flow chart of magnetic field measurement and shimming process

    图  3  磁场测量径向定位方法示意图

    Figure  3.  Schematic diagram of radial positioning method for magnetic field measurement

    图  4  全自动化磁场测量装置示意图

    Figure  4.  Schematic diagram of fully automated magnetic field measuring device

    图  5  磁场测量仪的控制流程

    Figure  5.  Control flow chart

    图  6  奇偶三角形在镶条上分布

    Figure  6.  Even and odd triangles on the strip

    图  7  奇偶三角形垫补算法形状函数

    Figure  7.  Shape function of odd and even triangle shimming algorithm

    图  8  磁场测量稳定性测试结果

    Figure  8.  Results of magnetic field measurement stability test

    图  9  磁场重复性测量结果

    Figure  9.  Results of magnetic field repeatability measurement

    图  10  14 MeV小回旋最终磁场测量垫补结果

    Figure  10.  Results of 14 MeV small cyclotron final magnetic field measurement shimming

    表  1  14 MeV回旋加速器物理设计参数

    Table  1.   Physical design parameters of 14 MeV cyclotron

    energy/MeVcurrent/µAradius/mmpole angle/(°)hamonic numberfrequency/MHzgain/MeV
    1440050052473.020.16
    下载: 导出CSV

    表  2  磁场测量误差要求

    Table  2.   Magnetic field measurement error requirement

    random
    error
    field measuring
    error/T
    radial measuring
    error/mm
    radial positioning
    error/mm
    angle measuring
    error/s
    angle positioning
    error/s
    2×10−40.10.11220
    system
    error
    measuring arm
    horizontal error/mm
    measuring arm
    axial error/mm
    probe horizontal
    position error/mm
    probe tilt
    error/( ͦ )
    center shaft
    tilt error/( ͦ )
    0.10.2420.2
    下载: 导出CSV
  • [1] 樊明武, 张兴治, 李振国. 强流质子回旋加速器CYCIAE30建成[J]. 科学通报, 1995, 40(20):1825-1828. (Fan Mingwu, Zhang Xingzhi, Li Zhenguo. Construction of high intensity proton cyclotron CYCIAE 30[J]. Chinese Science Bulletin, 1995, 40(20): 1825-1828 doi: 10.3321/j.issn:0023-074X.1995.20.001

    Fan Mingwu, Zhang Xingzhi, Li Zhenguo. Construction of high intensity proton cyclotron CYCIAE 30[J]. Chinese Science Bulletin, 1995, 40(20): 1825-1828 doi: 10.3321/j.issn:0023-074X.1995.20.001
    [2] 李振国, 吴隆成, 葛涛, 等. 10MeV强流回旋加速器的束流调试[J]. 原子能科学技术, 2011, 45(5):588-594. (Li Zhenguo, Wu Longcheng, Ge Tao, et al. Beam test of 10MeV high intensity cyclotron[J]. Atomic Energy Science and Technology, 2011, 45(5): 588-594

    Li Zhenguo, Wu Longcheng, Ge Tao, et al. Beam test of 10MeV high intensity cyclotron[J]. Atomic Energy Science and Technology, 2011, 45(5): 588-594
    [3] 张天爵, 李振国, 储诚节, 等. 强流回旋加速器综合试验装置的设计与建造[J]. 中国物理C, 2008, 32(s1):237-240. (Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Test stand design and construction for high intensity cyclotron developement[J]. Chinese Physics C, 2008, 32(s1): 237-240

    Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Test stand design and construction for high intensity cyclotron developement[J]. Chinese Physics C, 2008, 32(s1): 237-240
    [4] 张天爵, 李振国, 储诚节, 等. 强流回旋加速器综合试验装置的研制[J]. 科学通报, 2011, 56(3):238-244. (Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Comprehensive test stand for high-intensity cyclotron development[J]. Chinese Science Bulletin, 2011, 56(3): 238-244 doi: 10.1007/s11434-010-4289-7

    Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Comprehensive test stand for high-intensity cyclotron development[J]. Chinese Science Bulletin, 2011, 56(3): 238-244 doi: 10.1007/s11434-010-4289-7
    [5] 张天爵, 樊明武, 安世忠, 等. CIAE回旋加速器及应用综述[J]. 原子能科学技术, 2020, 54(s1):275-292. (Zhang Tianjue, Fan Mingwu, An Shizhong, et al. Review of cyclotrons and their applications at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 275-292

    Zhang Tianjue, Fan Mingwu, An Shizhong, et al. Review of cyclotrons and their applications at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 275-292
    [6] 王胜龙, 王川, 张天爵, 等. 50 MeV负氢回旋加速器主磁铁设计研究[J]. 原子能科学技术, 2019, 53(9):1681-1686. (Wang Shenglong, Wang Chuan, Zhang Tianjue, et al. Study on main magnet design of 50 MeV H cyclotron[J]. Atomic Energy Science and Technology, 2019, 53(9): 1681-1686 doi: 10.7538/yzk.2019.youxian.0130

    Wang Shenglong, Wang Chuan, Zhang Tianjue, et al. Study on main magnet design of 50 MeV H cyclotron[J]. Atomic Energy Science and Technology, 2019, 53(9): 1681-1686 doi: 10.7538/yzk.2019.youxian.0130
    [7] Zhang Tianjue, Lu Yinlong, Yin Zhiguo, et al. Overall design of CYCIAE-14, a 14 MeV PET cyclotron[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(24): 2950-2954. doi: 10.1016/j.nimb.2011.04.049
    [8] Li Ming, Lyu Yinlong, Zhang Tianjue, et al. Progress on field mapping system for 230 MeV superconducting cyclotron[J]. Annual Report of China Institute of Atomic Energy, 2017: 206-207.
    [9] 张天爵, 樊明武. 回旋加速器物理与工程技术[M]. 北京: 原子能出版社, 2010

    Zhang Tianjue, Fan Mingwu. Physics and engineering technology of cyctron[M]. Beijing: Atomic Energy Press, 2010
    [10] Turner S. CAS - CERN Accelerator School: Magnetic measurement and alignment[M]. Montreux, Switzerland: CERN, 1992.
    [11] Li Ming, Zhong Junqing, Cui Tao, et al. Application and development of a method to shim the isochronous field in small cyclotrons[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4101504.
    [12] 曹磊, 李明, 吕银龙, 等. 超导回旋加速器磁场测量仪控制系统设计[J]. 核电子学与探测技术, 2018, 38(3):346-349. (Cao Lei, Li Ming, Lv Yinlong, et al. The design of field mapping control system for superconducting cyclotron[J]. Nuclear Electronics & Detection Technology, 2018, 38(3): 346-349 doi: 10.3969/j.issn.0258-0934.2018.03.008

    Cao Lei, Li Ming, Lv Yinlong, et al. The design of field mapping control system for superconducting cyclotron[J]. Nuclear Electronics & Detection Technology, 2018, 38(3): 346-349 doi: 10.3969/j.issn.0258-0934.2018.03.008
    [13] Li Ming, Lv Yinlong, Cao Lei, et al. Field mapping system design for the superconducting cyclotron CYCIAE-230[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 9001204.
    [14] Beeckman W, Schuwer M, Vandeplassche D, et al. The C235 IBA-SHI protontherapy cyclotron for the NPTC project progress report of the magnetic field mapping and shimming[C]//Proceedings of the 14th International Conference on Cyclotrons and their Applications. Cape Town, 454-457.
    [15] Roy A, Bhattacharjee T, Chaddha N, et al. Median plane magnetic field mapping for super conducting cyclotron (SCC) in VECC[R]. Indore: Raja Ramanna Centre for Advanced Technology (RRCAT), 2007: 652-654.
    [16] 赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版社, 2006: 11

    Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[J]. Beijing: Higher Education Press, 2006: 11
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  473
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-04-24
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回