Development of a fully automated magnetic field measurement and shimming platform for small cyclotrons
-
摘要: 针对核医学诊疗对PET医用放射性核素的需求,中国原子能科学研究院正在开展PET医用小型回旋加速器的产业化研究。磁场测量和垫补是回旋加速器生产中的必经环节,小型回旋加速器结构紧凑实现磁场测量仪的全自动化控制是一个难点,解决常规垫补方法加工成本高和周期长的问题是产业化生产的关键。本文详细介绍小型回旋加速器全自动化磁场测量和精密垫补平台的研制,通过多台小型回旋加速器的磁场测量和垫补实践,发展一套快速磁场测量和垫补流程,实现全自动化测量方法缩短磁场测量周期,采用精密垫补算法减少垫补次数。在保证磁场测量和垫补工作高效高质量完成的条件下,极大降低了时间和加工成本,为小型回旋加速器的产业化生产打下基础。目前,中国原子能科学研究院已经完成多台小型回旋加速器的商业化落地。Abstract: In response to the demand for PET medical radionuclides in nuclear medicine diagnosis and treatment, China Institute of Atomic Energy is conducting research on the industrialization of PET medical small cyclotrons. Magnetic field measurement and shimming is the key point in the production of cyclotrons. The compact structure of small cyclotron is a difficulty to realize the full automatic control of magnetic field measuring instrument and solving the problems of high processing cost and long cycle of conventional shimming method is the key to industrialized production. This article will introduce in detail the development of a fully automated magnetic field measurement and precision shimming platform for small cyclotrons. Through the magnetic field measurement and shimming practice of multiple small cyclotrons, a set of rapid magnetic field measurement and shimming procedures will be developed to realize fully automatic measurement method to shorten the magnetic field measurement cycle and reduce the time of shimming by precision shimming algorithm. Under the condition of ensuring high efficiency and high quality of magnetic field measurement and shimming, the time and the processing cost are greatly reduced, which lays a foundation for the industrialized production of small cyclotrons. At present, the China Institute of Atomic Energy has completed the commercialization of several small cyclotrons.
-
Key words:
- small cyclotron /
- compact /
- fully automatic /
- magnetic field measurement /
- precision shimming
-
表 1 14 MeV回旋加速器物理设计参数
Table 1. Physical design parameters of 14 MeV cyclotron
energy/MeV current/µA radius/mm pole angle/(°) hamonic number frequency/MHz gain/MeV 14 400 500 52 4 73.02 0.16 表 2 磁场测量误差要求
Table 2. Magnetic field measurement error requirement
random
errorfield measuring
error/Tradial measuring
error/mmradial positioning
error/mmangle measuring
error/sangle positioning
error/s2×10−4 0.1 0.1 12 20 system
errormeasuring arm
horizontal error/mmmeasuring arm
axial error/mmprobe horizontal
position error/mmprobe tilt
error/( ͦ )center shaft
tilt error/( ͦ )0.1 0.2 4 2 0.2 -
[1] 樊明武, 张兴治, 李振国. 强流质子回旋加速器CYCIAE30建成[J]. 科学通报, 1995, 40(20):1825-1828. (Fan Mingwu, Zhang Xingzhi, Li Zhenguo. Construction of high intensity proton cyclotron CYCIAE 30[J]. Chinese Science Bulletin, 1995, 40(20): 1825-1828 doi: 10.3321/j.issn:0023-074X.1995.20.001Fan Mingwu, Zhang Xingzhi, Li Zhenguo. Construction of high intensity proton cyclotron CYCIAE 30[J]. Chinese Science Bulletin, 1995, 40(20): 1825-1828 doi: 10.3321/j.issn:0023-074X.1995.20.001 [2] 李振国, 吴隆成, 葛涛, 等. 10MeV强流回旋加速器的束流调试[J]. 原子能科学技术, 2011, 45(5):588-594. (Li Zhenguo, Wu Longcheng, Ge Tao, et al. Beam test of 10MeV high intensity cyclotron[J]. Atomic Energy Science and Technology, 2011, 45(5): 588-594Li Zhenguo, Wu Longcheng, Ge Tao, et al. Beam test of 10MeV high intensity cyclotron[J]. Atomic Energy Science and Technology, 2011, 45(5): 588-594 [3] 张天爵, 李振国, 储诚节, 等. 强流回旋加速器综合试验装置的设计与建造[J]. 中国物理C, 2008, 32(s1):237-240. (Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Test stand design and construction for high intensity cyclotron developement[J]. Chinese Physics C, 2008, 32(s1): 237-240Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Test stand design and construction for high intensity cyclotron developement[J]. Chinese Physics C, 2008, 32(s1): 237-240 [4] 张天爵, 李振国, 储诚节, 等. 强流回旋加速器综合试验装置的研制[J]. 科学通报, 2011, 56(3):238-244. (Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Comprehensive test stand for high-intensity cyclotron development[J]. Chinese Science Bulletin, 2011, 56(3): 238-244 doi: 10.1007/s11434-010-4289-7Zhang Tianjue, Li Zhenguo, Chu Chengjie, et al. Comprehensive test stand for high-intensity cyclotron development[J]. Chinese Science Bulletin, 2011, 56(3): 238-244 doi: 10.1007/s11434-010-4289-7 [5] 张天爵, 樊明武, 安世忠, 等. CIAE回旋加速器及应用综述[J]. 原子能科学技术, 2020, 54(s1):275-292. (Zhang Tianjue, Fan Mingwu, An Shizhong, et al. Review of cyclotrons and their applications at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 275-292Zhang Tianjue, Fan Mingwu, An Shizhong, et al. Review of cyclotrons and their applications at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 275-292 [6] 王胜龙, 王川, 张天爵, 等. 50 MeV负氢回旋加速器主磁铁设计研究[J]. 原子能科学技术, 2019, 53(9):1681-1686. (Wang Shenglong, Wang Chuan, Zhang Tianjue, et al. Study on main magnet design of 50 MeV H− cyclotron[J]. Atomic Energy Science and Technology, 2019, 53(9): 1681-1686 doi: 10.7538/yzk.2019.youxian.0130Wang Shenglong, Wang Chuan, Zhang Tianjue, et al. Study on main magnet design of 50 MeV H− cyclotron[J]. Atomic Energy Science and Technology, 2019, 53(9): 1681-1686 doi: 10.7538/yzk.2019.youxian.0130 [7] Zhang Tianjue, Lu Yinlong, Yin Zhiguo, et al. Overall design of CYCIAE-14, a 14 MeV PET cyclotron[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(24): 2950-2954. doi: 10.1016/j.nimb.2011.04.049 [8] Li Ming, Lyu Yinlong, Zhang Tianjue, et al. Progress on field mapping system for 230 MeV superconducting cyclotron[J]. Annual Report of China Institute of Atomic Energy, 2017: 206-207. [9] 张天爵, 樊明武. 回旋加速器物理与工程技术[M]. 北京: 原子能出版社, 2010Zhang Tianjue, Fan Mingwu. Physics and engineering technology of cyctron[M]. Beijing: Atomic Energy Press, 2010 [10] Turner S. CAS - CERN Accelerator School: Magnetic measurement and alignment[M]. Montreux, Switzerland: CERN, 1992. [11] Li Ming, Zhong Junqing, Cui Tao, et al. Application and development of a method to shim the isochronous field in small cyclotrons[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4101504. [12] 曹磊, 李明, 吕银龙, 等. 超导回旋加速器磁场测量仪控制系统设计[J]. 核电子学与探测技术, 2018, 38(3):346-349. (Cao Lei, Li Ming, Lv Yinlong, et al. The design of field mapping control system for superconducting cyclotron[J]. Nuclear Electronics & Detection Technology, 2018, 38(3): 346-349 doi: 10.3969/j.issn.0258-0934.2018.03.008Cao Lei, Li Ming, Lv Yinlong, et al. The design of field mapping control system for superconducting cyclotron[J]. Nuclear Electronics & Detection Technology, 2018, 38(3): 346-349 doi: 10.3969/j.issn.0258-0934.2018.03.008 [13] Li Ming, Lv Yinlong, Cao Lei, et al. Field mapping system design for the superconducting cyclotron CYCIAE-230[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 9001204. [14] Beeckman W, Schuwer M, Vandeplassche D, et al. The C235 IBA-SHI protontherapy cyclotron for the NPTC project progress report of the magnetic field mapping and shimming[C]//Proceedings of the 14th International Conference on Cyclotrons and their Applications. Cape Town, 454-457. [15] Roy A, Bhattacharjee T, Chaddha N, et al. Median plane magnetic field mapping for super conducting cyclotron (SCC) in VECC[R]. Indore: Raja Ramanna Centre for Advanced Technology (RRCAT), 2007: 652-654. [16] 赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版社, 2006: 11Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[J]. Beijing: Higher Education Press, 2006: 11