留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光光谱合束及光栅热效应研究进展

王汉斌 杨依枫 袁志军 咸昱桥 刘美忠 邬文杰 李炳霖 何兵 周军

王汉斌, 杨依枫, 袁志军, 等. 光纤激光光谱合束及光栅热效应研究进展[J]. 强激光与粒子束, 2020, 32: 121002. doi: 10.11884/HPLPB202032.200240
引用本文: 王汉斌, 杨依枫, 袁志军, 等. 光纤激光光谱合束及光栅热效应研究进展[J]. 强激光与粒子束, 2020, 32: 121002. doi: 10.11884/HPLPB202032.200240
Wang Hanbin, Yang Yifeng, Yuan Zhijun, et al. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32: 121002. doi: 10.11884/HPLPB202032.200240
Citation: Wang Hanbin, Yang Yifeng, Yuan Zhijun, et al. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32: 121002. doi: 10.11884/HPLPB202032.200240

光纤激光光谱合束及光栅热效应研究进展

doi: 10.11884/HPLPB202032.200240
基金项目: 广东省重点领域研究开发计划项目(2018B090904001);国家重点研发计划项目(2018YFB0504500);国家自然科学基金项目(61735007,61805261,61705243);上海市优秀技术带头人计划项目(17XD1424800);上海市自然科学基金项目(16ZR1440100,16ZR1440200)
详细信息
    作者简介:

    王汉斌(1994—),男,博士研究生,主要从事光纤激光光谱合束技术与光栅性能分析方面的研究;hanbin_wang@foxmail.com

    通讯作者:

    何 兵(1975—),男,博士,研究员,博士生导师,主要从事高功率光纤激光和光谱合束方面的研究;bryanho@mail.siom.ac.cn

    周 军(1972—),男,博士,研究员,博士生导师,主要从事高功率光纤激光和光谱合束方面的研究;junzhousd@siom.ac.cn

  • 中图分类号: O532

Research progress on fiber laser spectral beam combining system and grating thermal analysis

  • 摘要: 受热效应、光学损伤与非线性效应等因素的限制,单纤的功率提高困难。因此通过光学元件将多束激光进行合束的光束合成技术应运而生。光谱合束方案具有结构简单,合束光束质量好等优点,逐渐成为了合束技术发展的主流。简要介绍了光纤激光光谱合束的几种常见合束方案,对比分析了几种合束技术的优缺点。对光谱合束中存在的光栅热畸变问题,从理论研究和实验研究两个方面进行了针对性的分析与讨论,并对光谱合束未来的发展趋势进行了展望。
  • 图  1  基于双色片的光谱合束系统原理示意图

    Figure  1.  Schematic diagram of dielectric mirrors spectral beam combining

    图  2  基于干涉滤光片的光谱合束结构示意图及干涉滤光片透射谱

    Figure  2.  Schematic diagram of interferometric-filter-based spectral beam combining and transmission spectrum

    图  3  基于边缘滤波器的光谱合束方案的实验配置

    Figure  3.  Experimental configuration of filter-based SBC scheme

    图  4  光谱合束系统中使用的边缘滤波器的结构及在不同的表面粗糙度下边缘滤波器的反射率曲线

    Figure  4.  Structure of the edge filter used in the SBC system and the reflectance curves of the edge filter under different surface roughness

    图  5  热透镜被动补偿方案的实验装置。

    Figure  5.  Experimental setup of passive compensation scheme for thermal lens

    图  6  组合光束质量优化前后值,插图是在不同功率下焦平面中的光束轮廓

    Figure  6.  The M2 values of the optimized combined beam quality, the insets are the transversal beam profile in focal plane under different power

    图  7  体布拉格光栅衍射谱及基于体布拉格光栅的光谱合束原理示意图

    Figure  7.  Diffraction spectral of VBG and schematic diagram of reflective-VBG-based spectral beam combining

    图  8  5路VBG光谱合束结构示意图

    Figure  8.  Schematic diagram of 5-channel VBG-based spectral beam combining

    图  9  四路激光基于VBG的光谱合束实验示意图

    Figure  9.  The 4-channel VBG-SBC system

    图  10  合束光束的光谱图及光栅衍射效率曲线图

    Figure  10.  The measured spectrum of the combined beam and the efficiency curve

    图  11  基于透射式和反射式衍射光栅的光谱合束原理示意图

    Figure  11.  Schematic diagram of transmission-grating and reflective-grating spectral beam combining

    图  12  金属介质衍射光栅结构示意图

    Figure  12.  Schematic of the mixed metal dielectric reflective grating

    图  13  多层电介质衍射光栅结构示意图

    Figure  13.  Schematic diagram of MLD diffraction grating

    图  14  外腔光纤激光光谱合束结构示意图

    Figure  14.  Schematic diagram of spectral beam combining of fiber laser in an external cavity

    图  15  外腔光谱合束系统实验结构示意图

    Figure  15.  Experimental setup schematic diagram of spectrum beam combining system by external-cavity oscillator

    图  16  (a)子光束以及合束光束的光束质量;(b)五路激光合束后输出激光光谱图

    Figure  16.  (a) Beam quality of laser units and output light after combination; (b) Spectrum after beam combination of five MOPA channels

    图  17  Aculight公司光纤激光光谱合束示意图

    Figure  17.  Schematic diagram of spectral beam combining of fiber laser in Aculight corporation

    图  18  耶拿大学光纤激光光谱合束示意图

    Figure  18.  Schematic diagram of spectral beam combining of fiber laser in University Jena

    图  19  反射衍射光栅及其在1064 nm处测得的衍射效率

    Figure  19.  Reflective diffraction grating and measured efficiency at 1064 nm

    图  20  中国工程物理研究院光纤激光光谱合束示意图

    Figure  20.  Schematic diagram of spectral beam combining of fiber laser in China Academy of Engineering Physics

    图  21  中国科学院上海光学精密机械研究所光纤激光光谱合束示意图

    Figure  21.  Schematic diagram of spectral beam combining of fiber laser in SIOM

    图  22  反射式MLD衍射光栅及其衍射效率

    Figure  22.  MLD reflective diffraction grating and measured efficiency of both TE and TM polarization

    图  23  中国航天科技集团光纤激光光谱合束示意图

    Figure  23.  Schematic diagram of spectral beam combining of fiber laser in CASC

    图  24  合束光束光谱图

    Figure  24.  Spectrum of the six-channel combined beam

    图  25  Aculight公司光纤激光光谱合束示意图

    Figure  25.  Schematic diagram of spectral beam combining of fiber laser in Aculight corporation

    图  26  反射式多层电介质衍射光栅图

    Figure  26.  MLD reflective diffraction grating

    图  27  SBC输出光束的频谱图

    Figure  27.  Spectrum of the SBC output beam showing

    图  28  100 kW激光辐照下光栅温度分布

    Figure  28.  Simulated temperature distribution used for SBC of 100 kW optical power

    图  29  光栅内部的光程差随热变形的变化图

    Figure  29.  Optical path difference inside the grating with thermal deformation

    图  30  不同辐照功率密度,合成光束和单光束的光束强度分布。其中,图中心的光斑代表组合光束的强度分布,图右上角的光斑显示单光束的强度分布

    Figure  30.  Intensity distribution of the combined beams and that of a single emitter for different power densities,where the spots on the centers of the figures represent the intensity of the combined beams,and the spots on the upper right corners of the figures show the intensity of the beams from a single emitter

    图  31  光栅热畸变模型

    Figure  31.  MLD grating models with thermal deformation

    图  32  基板、薄膜和光栅浮雕的近场相位调制和远场强度分布。I/I0是归一化强度(波长为1064 nm)

    Figure  32.  Near-field phase modulation and far-field intensity distribution of A,B,and C,where A contains deformations of substrate,films,and grating reliefs,B contains substrate deformation only,and C is the circumstance without thermal deformation. II0 is the normalization intensity (λ=1064 nm)

    图  33  多层电介质膜光栅激光辐照升温机制

    Figure  33.  Schematic diagram of the laser irradiation MLD grating temperature rise mechanism

    图  34  光栅承受10.05 kW激光辐照30 s时前表面温度分布情况

    Figure  34.  Temperature distribution of 10.05 kW irradiation on the MLD grating front surface measured by the infrared thermal imager

    图  35  (a)不同功率激光辐照时光栅上表面最高温度实验与模拟结果对比图;(b)不同功率激光辐照时光栅背面实验与模拟的温度升温曲线图

    Figure  35.  (a) Simulation and experimental maximum MLD grating front surface temperature under different laser irradiation powers. (b) Maximum MLD grating back surface temperature as a function of the time and corresponding curves for different irradiation powers

    图  36  光栅热畸变实验装置示意图

    Figure  36.  Schematic of the configuration used for the MLD grating surface distortion measurement

    图  37  高功率激光辐照下的干涉条纹图像

    Figure  37.  Interference fringes under high power fiber laser irradiation

    图  38  光栅表面形变拟合结果

    Figure  38.  Fitting results of surface deformation of grating

    图  39  干涉仪测量结果

    Figure  39.  Effect of grating heating is measured with an interferometer

    图  40  (a)多层介质膜光栅测试装置示意图;(b)激光辐照前后光栅干涉条纹图样对比图

    Figure  40.  (a) Test setup for measuring distortion of the multi-layer dielectric grating under high brightness optical loads. (b) Interferograms for the grating with and without a 1.5 kW/cm2 peak irradiance,70 W average power optical load

    图  41  实验所用光栅及承受激光辐照1000 s时表面畸变情况

    Figure  41.  MLD grating and expansion distribution after 1000 s laser irradiation

    图  42  光栅热变形实验示意图

    Figure  42.  Experimental schematic for MLD grating thermal deformation detection.

    图  43  远场光斑强度分布

    Figure  43.  Far-field beams of probe laser captured by CCD

    图  44  激光光束质量随辐照激光功率变化图

    Figure  44.  Beam quality factor of the laser versus the power density

    图  45  光栅衍射特性监测装置

    Figure  45.  Experimental setup of grating diffraction characteristic

    图  46  (a)光栅表面温度与光束质量随功率密度的变化图;(b)束腰直径与远场发散角随功率密度的变化

    Figure  46.  (a) Temperature on grating surface and M2 versus the irradiation laser power density; (b) Waist diameter and far field divergence angle versus the irradiation laser power density

    表  1  组合光束质量变化

    Table  1.   Beam quality M2-Factors of the combined beams

    power density/(kW·cm−2M2
    0 1.00
    0.5 1.41
    1 2.30
    1.5 3.35
    2 4.42
    3 6.48
    下载: 导出CSV
  • [1] Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications[J]. Appl Opt, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [2] Zhou Pu, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Phys, 2012, 22(5): 823-831. doi: 10.1134/S1054660X12050404
    [3] Pask H M, Carman Robert J, Hanna David C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1−1.2 μm region[J]. IEEE J Sel Top Quantum Electron, 1995, 1(1): 2-13. doi: 10.1109/2944.468377
    [4] Dawson Jay W, Messerly Michael J, Beach Raymond J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Opt Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [5] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Opt Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [6] Dajani I, Zeringue C, Lu Chunte, et al. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power[J]. Opt Lett, 2010, 35(18): 3114-3116. doi: 10.1364/OL.35.003114
    [7] White J O, Vasilyev A, Cahill J P, et al. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser[J]. Opt Express, 2012, 20(12): 15872-15881.
    [8] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium doped large-core fiber laser with 1: 36 kW continuous-wave output power[J]. Opt Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
    [9] Fridman M, Nixon M, Ronen E, et al. Phase locking of two coupled lasers with many longitudinal modes[J]. Opt Lett, 2010, 35(4): 526-528. doi: 10.1364/OL.35.000526
    [10] Bourdon P, Lombard L, Durécu A, et al. Coherent combining of fiber lasers[C]//Proc of SPIE. 2017: 1025402.
    [11] 王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状, 趋势与挑战[J]. 中国激光, 2017, 44:0201001. (Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber laser[J]. Chinese Journal of Lasers, 2017, 44: 0201001
    [12] Wang B, Sanchez A. All-fiber passive coherent beam combining of fiber lasers and challenges[C]//Fiber Laser Applications. 2012: FTh3A. 2.
    [13] He Bing, Lou Qihong, Wang Wei, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Applied Physics Letters, 2008, 92(25): 43-45.
    [14] Zhou Pu, Wang Xiaolin, Ma Yanxing, et al. Beam quality and power scalability of fiber laser array in a S-F cavity[C]//Proc of SPIE. 2009: 75090U.
    [15] Loftus T H, Thomas A M, Norsen M, et al. Four-channel, high power, passively phase locked fiber array[C]//Advanced Solid-state Photonics. 2008: WA4.
    [16] Xue Yuhao, He Bing, Zhou Jun, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chin Phys Lett, 2011, 28: 054212.
    [17] Ma Pengfei, Zhou Pu, Su R T, et al. Passive coherent polarization beam combination of a four-fiber amplifier array[J]. IEEE Photonics Journal, 2013, 5(6): 7101307.
    [18] Chang Weizung, Wu Tsaiwei, Winful H G, et al. Array size scalability of passively coherently phased fiber laser arrays[J]. Opt Express, 2010, 18(9): 9634-9642.
    [19] Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Opt Lett, 2000, 25(6): 405-407.
    [20] Von Rudiger E, Chantal M. Beam-combiner for fiber-delivered laser-beams of different wavelengths: U. S. 8599487[P]. 2013-12-03.
    [21] Ronalds G, Karen E J. Beam combining/splitter cube prism for color polarization: U. S. 5067799[P]. 1991-11-26.
    [22] Pickering R D. Beam combining prism: U. S. 2983183[P]. 1961-05-09.
    [23] Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filters[J]. Opt Express, 2009, 17(25): 22974-22982.
    [24] Ludewigt K, Liem A, Stuhr U, et al. High-power laser development for laser weapons[C]//Proc of SPIE. 2019: 1116207.
    [25] Chen Fan, Zhang Jianyun, Ma Jun, et al. Beam quality analysis and optimization for 10 kW-level spectral beam combination system[J]. Opt Commun, 2019, 444: 45-55.
    [26] Chen Fan, Ma Jun, Wei Cong, et al. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters[J]. Opt Express, 2017, 25(26): 32783-32791.
    [27] Ma Jun, Chen Fan, Wei Cong, et al. Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system[J]. Applied Sciences, 2019, 9(10): 2152.
    [28] Divliansky I. Volume Bragg gratings: Fundamentals and applications in laser beam combining and beam phase transformations[M//OL]//Holographic Materials and Optical Systems. https://www.intechopen.com/books/holographic-materials-and-optical-systems/volume-bragg-gratings-fundamentals-and-applications-in-laser-beam-combining-and-beam-phase-transform.
    [29] Ciapurin I V, Glebov L B, Glebova L N, et al. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating[C]//Proc of SPIE. 2003, 4974: 209-219.
    [30] Sevian A, Andrusyak O, Ciapurin I, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Opt Lett, 2008, 33(4): 384-386.
    [31] 梁小宝, 陈良明, 李超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27:071012. (Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg grating[J]. High Power Laser and Particle Beams, 2015, 27: 071012 doi: 10.11884/HPLPB201527.071012
    [32] 周泰斗, 梁小宝, 李超, 等. 基于透射型体布拉格光栅的两通道 2.5 kW 光谱组束输出[J]. 物理学报, 2017, 66:084204. (Zhou Taidou, Liang Xiaobao, Li Chao, et al. Two-channel 2.5 kW spectral beam output based on transmissive volume Bragg grating[J]. Acta Physica Sinica, 2017, 66: 084204 doi: 10.7498/aps.66.084204
    [33] Zou Taidou, Liang Xiaobao, Li Chao, et al. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings[J]. Chin Phys Lett, 2016, 33: 124205.
    [34] Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Appl Opt, 2014, 53(6): 1242-1246.
    [35] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Opt Express, 2013, 21(24): 29620.
    [36] Ingersoll G B, Leger J R. Channel density and efficiency optimization of spectral beam combining systems based on volume Bragg gratings in sequential and multiplexed arrangements[J]. Appl Opt, 2015, 54(20): 6244-6253.
    [37] Yang Yingying, Zhao Yaping, Wang Lirong, et al. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining[J]. Journal of Applied Physics, 2015, 117: 103108.
    [38] Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Appl Opt, 2012, 51(20): 4902-4906.
    [39] Zhang Rui, Wang Yufei, Zhang Yejin, et al. Broadband and polarization-insensitive subwavelength grating reflector for the near-infrared region[J]. Chin Opt Lett, 2014, 12: 020502.
    [40] Li Linxin, Jin Yunxia, Kong Fanyu, et al. Beam modulation due to thermal deformation of grating in a spectral beam combining system[J]. Appl Opt, 2017, 56(19): 5511-5519.
    [41] Cook C C, Fan T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[J]. Optics & Photonics News, 1999, 10(10): 411.
    [42] Bochove E J. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445.
    [43] Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Opt Lett, 2003, 28(5): 331-333.
    [44] 张璟璞, 杨依枫, 赵翔, 等. 外腔振荡式光纤激光光谱合成系统[J]. 红外与激光工程, 2018, 47:0103008. (Zhang Jingpu, Yang Yifeng, Zhao Xiang, et al. Spectral beam combining system of fiber laser by external-cavity fiber oscillator[J]. Infrared and Laser Engineering, 2018, 47: 0103008 doi: 10.3788/IRLA201847.0103008
    [45] Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers in a MOPA configuration[C]//Conference on Lasers and Electro Optics. 2002: 594-595.
    [46] Loftus T H, Liu A, Hoffman P R, et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Opt Lett, 2007, 32(4): 349-351. doi: 10.1364/OL.32.000349
    [47] Christian W, Oliver S, Igor T, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Opt Express, 2009, 17(3): 1178-1183. doi: 10.1364/OE.17.001178
    [48] Christian W, Oliver S, Igor T, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [49] 张艳, 张彬, 祝颂军. 谱合成光束特性的模拟分析[J]. 物理学报, 2007, 56(8):4590-4595. (Zhang Yan, Zhang Bin, Zhu Songjun, et al. Analysis of the property of the beam after spectral beam combining[J]. Acta Physica Sinica, 2007, 56(8): 4590-4595 doi: 10.3321/j.issn:1000-3290.2007.08.042
    [50] 孔伟金, 云茂金, 孙欣, 等. 基于严格耦合波理论的多层介质膜光栅衍射特性分析[J]. 物理学报, 2008, 57(8):4904-4910. (Kong Weijin, Yun Maojin, Sun Xin, et al. Diffraction property of multi-layer dielectric gratings studied by rigorous coupled-wave analysis[J]. Acta Physica Sinica, 2008, 57(8): 4904-4910 doi: 10.3321/j.issn:1000-3290.2008.08.040
    [51] Zhang Yan, Zhang Bin. Analysis of beam quality for the laser beams after spectral beam combining[J]. International Journal for Light and Electron Optics, 2010, 121(13): 1236-1242. doi: 10.1016/j.ijleo.2009.01.002
    [52] Yan Hong, Ma Yi, Sun Yinhong, et al. Scalable hybrid beam combining of kilowatt fiber amplifiers into a 5-kW beam[J]. Opt Commun, 2017, 397: 95-99. doi: 10.1016/j.optcom.2017.04.007
    [53] 马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43:0901009. (Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW Common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Laser, 2016, 43: 0901009 doi: 10.3788/CJL201643.0901009
    [54] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt Express, 2016, 24(11): 12063. doi: 10.1364/OE.24.012063
    [55] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Appl Opt, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
    [56] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//Proc of SPIE. 2013: 860115.
    [57] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proc of SPIE. 2016: 97300Y.
    [58] Martin L. Lockheed Martin to deliver world recordsetting 60 kW laser to U. S. Army[EB/OL]. https://phys.org/news/2017-03-lockheed-martin-world-record-setting-60kw.html.
    [59] Jens L, Fabian R, Sandro K, et al. The rising power of fiber lasers and amplifiers[J]. IEEE J Sel Top Quantum Electron, 2007, 13(3): 537-545. doi: 10.1109/JSTQE.2007.897182
    [60] Yang Lei, Wu Zhen, Zhang Bin. Influence of thermal deformation of a multilayer dielectric grating on a spectrally combined beam[J]. Appl Opt, 2016, 55(32): 9091-9100. doi: 10.1364/AO.55.009091
    [61] Wang Hanbin, Yuan Zhijun, Song Yinglin, et al. Thermal analysis of multilayer dielectric grating with high power laser irradiation[J]. AIP Advances, 2020, 10: 055207. doi: 10.1063/5.0006249
    [62] Wang J Y, Silva D E. Wave-front interpretation with Zernike polynomials[J]. Appl Opt, 1980, 19(9): 1510-1518. doi: 10.1364/AO.19.001510
    [63] 鄢静舟, 雷凡, 周比方, 等. 用Zernike 多项式进行波面拟合的几种算法[J]. 光学 精密工程, 1999, 7(5):119-128. (Yan Jingzhou, Lei Fan, Zhou Bifang, et al. Algorithms for wavefront fitting using Zernike polynomial[J]. Optics and Precision Engineering, 1999, 7(5): 119-128 doi: 10.3321/j.issn:1004-924X.1999.05.020
    [64] Liu A, Mead R, Vatter T A, et al. Spectral beam combining of high-power fiber lasers[C]//Proc of SPIE. 2004, 5335: 81-88.
    [65] Loftus T H, Liu A, Hoffman P R, et al. 258 W of spectrally beam combined power with near-diffraction limited beam quality[C]//Proc of SPIE. 2006: 6102S.
    [66] Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Opt Express, 2018, 26(17): 21675-21684. doi: 10.1364/OE.26.021675
    [67] Xu Jiao, Chen Junming, Chen Peng, et al. Dependence of temperature and far-field beam quality on substrate thickness of a spectral beam combining grating with 13.4 kW/cm2 laser irradiation[J]. Appl Opt, 2018, 57(18): D165. doi: 10.1364/AO.57.00D165
    [68] 公维超, 郑也, 杨依枫, 等. 多层电介质衍射光栅高功率激光辐照特性研究[J]. 中国激光, 2017, 44:0504003. (Gong Weichao, Zheng Ye, Yang Yifeng, et al. Research on characteristic of multilayer dielectric diffraction grating under high power laser irradiation[J]. Chinese Journal of Lasers, 2017, 44: 0504003 doi: 10.3788/CJL201744.0504003
  • 加载中
图(46) / 表(1)
计量
  • 文章访问数:  3773
  • HTML全文浏览量:  1179
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2020-10-22
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回