留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下Co-60源切伦科夫辐射的蒙卡模拟

刘斌 吕焕文 李兰 唐松乾

刘斌, 吕焕文, 李兰, 等. 水下Co-60源切伦科夫辐射的蒙卡模拟[J]. 强激光与粒子束, 2018, 30: 016007. doi: 10.11884/HPLPB201830.170199
引用本文: 刘斌, 吕焕文, 李兰, 等. 水下Co-60源切伦科夫辐射的蒙卡模拟[J]. 强激光与粒子束, 2018, 30: 016007. doi: 10.11884/HPLPB201830.170199
Liu Bin, Lü Huanwen, Li Lan, et al. Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source[J]. High Power Laser and Particle Beams, 2018, 30: 016007. doi: 10.11884/HPLPB201830.170199
Citation: Liu Bin, Lü Huanwen, Li Lan, et al. Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source[J]. High Power Laser and Particle Beams, 2018, 30: 016007. doi: 10.11884/HPLPB201830.170199

水下Co-60源切伦科夫辐射的蒙卡模拟

doi: 10.11884/HPLPB201830.170199
详细信息
    作者简介:

    刘斌(1987-), 男,博士,从事核反应辐射屏蔽及源项计算工作;liubin871204@126.com

  • 中图分类号: TL8

Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source

  • 摘要: 随着核应用领域的不断拓宽,放射源丢失事故发生的概率也随之增加。机载伽马谱仪可有效搜寻地面放射源,然而对于放射源丢失于水域的情况,由于伽马射线经由水层屏蔽后可探测性降低,故利用放射源在水中产生的切伦科夫辐射对其进行搜寻显得十分重要。采用MCNP与Geant4相结合的方法,以及在Geant4程序中采用接续计算技巧,对Co-60源在水中的切伦科夫光产生以及传输进行了计算,计算表明,切伦科夫光经水中传播后,主要波段在300~600 nm,强度呈由边缘到中心渐强的特征分布,分布范围大致与放射源在水中的深度一致,在水中传输300 m后其光通量约为100 cm-2,可利用光谱特征和强度分布特征对其进行测量。
  • 图  1  Co-60密封源结构

    Figure  1.  Structure of sealed Co-60 source

    图  2  吸收谱和散射谱

    Figure  2.  Absorption and scattering coefficients of water

    图  3  Co-60在水中产生切伦科夫光通量分布

    Figure  3.  Flux distribution of Cherenkov light from Co-60 source

    图  4  切伦科夫光在水中传播不同距离后光通量分布

    Figure  4.  Distributions of Cherenkov light flux after transmission through different distances in water

    图  5  点源模型衰减计算与Geant4衰减计算光通量比较

    Figure  5.  Absorption simulation with Geant4 and point source assumption

    图  6  衰减不同距离后切伦科夫光光谱变化

    Figure  6.  Variation of wavelength spectra of Cherenkov light through transmission in water

    表  1  Co-60外壳表面伽马、电子源强

    Table  1.   Source intensity of gamma radiation and electrons

    position gamma radiation
    /(particles·s-1)
    electrons
    /(particles·s-1)
    tube surface 1.358 4×1014 1.116 1×1012
    top surface 6.822 4×1012 5.741 7×1010
    bottom surface 2.126 1×1013 1.748 1×1011
    下载: 导出CSV
  • [1] 闻良生, 龚频, 黄茜, 等. 小型旋翼机机载辐射环境监测系统的设计与实现[J]. 强激光与粒子束, 2016, 28: 106004. doi: 10.11884/HPLPB201628.160036

    Wen Liangsheng, Gong Pin, Huang Xi, et al. Design and implementation of minitype rotorcraft airborne radiation monitoring system. High Power Laser and Particle Beams, 2016, 28: 106004 doi: 10.11884/HPLPB201628.160036
    [2] 倪卫冲, 刘士凯, 高国林, 等. AGS-863航空伽马能谱勘查系统机载试验[J]. 中国核科学技术进展报告, 2011, 2(1): 335-343. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201110001060.htm

    Ni Weichong, Liu Shikai, Gao Guolin, et al. Airborne testing of AGS-863 airborne gamma spectrometry survey system. Progress Report on China Nuclear Science & Technology, 2011, 2(1): 335-343 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201110001060.htm
    [3] 翁渝民. 单光子计数-弱信号检测的有力手段[J]. 物理, 1980, 9(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ198001007.htm

    Weng Yumin. Single photon counting-efficient technique for weak single measurement. Physics, 1980, 9(1): 20-24 https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ198001007.htm
    [4] 舒迪昀, 汤晓兵, 侯笑笑, 等. 基于Cerenkov效应水下放射源搜寻技术的可行性分析研究[J]. 原子能科学技术, 2015, 49(4): 582-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201504002.htm

    Shu Diyun, Tang Xiaobing, Hou Xiaoxiao, et al. Analysis of feasibility for searching underwater radioactive source using Cerenkov effect. Atomic Energy Science and Technology, 2015, 49(4): 582-588 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201504002.htm
    [5] 刘斌, 贾清刚, 张天奎, 等. 水下切伦科夫光光斑的蒙特卡罗模拟[J]. 强激光与粒子束, 2013, 25(1): 196-200. doi: 10.3788/HPLPB20132501.0196

    Liu Bin, Jia Qinggang, Zhang Tiankui, et al. Monte Carlo simulation of Cherenkov light spot produced by underwater radioactive source. High Power Laser and Particle Beams, 2013, 25(1): 196-200 doi: 10.3788/HPLPB20132501.0196
    [6] Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A, 2007, 506(3): 250-303. https://www.sciencedirect.com/science/article/pii/S0168900203013688
    [7] Allison J, Amako K, Apostolaki J, et al. Geant4 developments and applications[J]. IEEE Trans Nuclear Science, 2006, 53(1): 270-278. https://ieeexplore.ieee.org/document/1610988/
    [8] Zhang Qingmin, Hu Zhigang, Deng Bangjie, et al. A simple iterative method for compensating response delay of self-powered neutron detector[J]. Nuclear Science and Engineering, 2017, 186(1): 293-302.
    [9] GB7465-2009. 高活度钴60密封放射源[S]. 中华人民共和国国家标准, 2009.

    GB7465-2009. High activity cobalt-60 sealed radioactive sources. PRC standard, 2009
    [10] Pope R M, Fry E S. Absorption spectrum(380~700 nm) of pure water. Integrating cavity measurement[J]. Appl Opt, 1997, 36(33): 8710-8723. https://pubmed.ncbi.nlm.nih.gov/18264420/
    [11] Quickenden T I, Irvin J A. The ultraviolet absorption spectrum of liquid water[J]. J Chem Phys, 1980, 72(8);4416-4428.
    [12] 曹婷婷, 罗时荣. 天空直射光谱和天空光谱的测量与分析[J]. 物理学报, 2006, 56(9): 5554-5557. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200709095.htm

    Cao Tingting, Luo Shirong. Measurement and analysis of direct sunlight and skylight spectra. Acta Phsica Sinica, 2006, 56(9): 5554-5557 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200709095.htm
    [13] 徐英莹, 金伟其. 夜晚天空光谱辐射测量研究及光谱去噪分析[J]. 光谱学与光谱分析, 2012, 32(6): 1456-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206006.htm

    Xu Yingying, Jin Weiqi. Measurement of night sky spectral radiation and analysis of spectral denoising. Spectroscopy and Spectral Analysis, 2012, 32(6): 1456-1459 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206006.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  369
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-06
  • 修回日期:  2017-09-04
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回