留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型高增益太赫兹折叠波导慢波结构

张芳 束小建 董志伟 杨温渊 孙会芳

张芳, 束小建, 董志伟, 等. 新型高增益太赫兹折叠波导慢波结构[J]. 强激光与粒子束, 2018, 30: 093102. doi: 10.11884/HPLPB201830.180003
引用本文: 张芳, 束小建, 董志伟, 等. 新型高增益太赫兹折叠波导慢波结构[J]. 强激光与粒子束, 2018, 30: 093102. doi: 10.11884/HPLPB201830.180003
Zhang Fang, Shu Xiaojian, Dong Zhiwei, et al. High-gain terahertz folded waveguide slow wave structure[J]. High Power Laser and Particle Beams, 2018, 30: 093102. doi: 10.11884/HPLPB201830.180003
Citation: Zhang Fang, Shu Xiaojian, Dong Zhiwei, et al. High-gain terahertz folded waveguide slow wave structure[J]. High Power Laser and Particle Beams, 2018, 30: 093102. doi: 10.11884/HPLPB201830.180003

新型高增益太赫兹折叠波导慢波结构

doi: 10.11884/HPLPB201830.180003
详细信息
    作者简介:

    张芳(1984-), 女,博士,从事太赫兹源器件、离子源研究;fangzhang328@163.com

  • 中图分类号: TN102

High-gain terahertz folded waveguide slow wave structure

  • 摘要: 提出采用分段变参数型折叠波导慢波结构提高器件增益的新方法。结合小信号理论分析和束-波互作用的三维PIC数值模拟,进行分段变参数型慢波结构的理论设计研究。通过0.345 THz两段式折叠波导慢波结构的设计实现和模拟验证,结果证明, 相同的电子注工作条件下,两段式慢波结构的电子转化效率和饱和功率相对于传统均匀型慢波结构提高了94%,并可以推广应用到多段式。
  • 图  1  折叠波导慢波结构

    Figure  1.  Folded waveguide slow wave structure

    图  2  多段式折叠波导慢波结构示意图

    Figure  2.  Multistage folded waveguide slow wave structure

    图  3  两段式折叠波导慢波结构的尺寸参数示意图

    Figure  3.  Size parameters of two stages of folded waveguide slow wave structure

    图  4  增益和输出功率随束-波互作用长度以及周期数目变化趋势

    Figure  4.  Gain and output power vs beam-wave interaction length and SWS periods

    图  5  不同轴向位置处1 THz波长范围内的电子注调制情况及其能量分布

    Figure  5.  Electron beam's modulation and energy distribution in 1 THz wavelength at different axial positions

    图  6  小信号增益曲线

    Figure  6.  Small signal gain curves

    图  7  输出功率随慢波结构长度的关系

    Figure  7.  Output power vs SWS length

    图  8  两段式慢波结构不同轴向位置处1 THz波长范围内的电子注调制情况及其能量分布

    Figure  8.  Electron beam's modulation and energy distribution in one terahertz wavelengths at different axial positions for two stage slow wave structure

    表  1  传统均匀型慢波结构模型参数

    Table  1.   Parameters of traditional folded waveguide slow wave structure

    a1/mm b1/mm p1/mm h1/mm D1/mm beam voltage/kV
    0.49 0.085 0.16 0.15 0.10 17.0(18.6)
    下载: 导出CSV

    表  2  第二段折叠波导慢波结构参数

    Table  2.   Parameters of the second section of folded waveguide slow wave structure

    a2/mm b2/mm p2/mm h2/mm D2/mm
    0.49 0.085 0.155(0.15) 0.15 0.10
    下载: 导出CSV
  • [1] Srivastava A. Microfabricated terahertz vacuum electron devices: technology capabilities and performance overview[J]. European Journal of Advances in Engineering and Technology, 2015, 2(8): 54-64.
    [2] Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans Terahertz Sci Tec, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [3] Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation[J]. Phys Plasmas, 2008, 15: 055502. doi: 10.1063/1.2838240
    [4] Kory C L, Read M E, Ives R L, et al. Design of overmoded interaction circuit for 1-kW 95 GHz TWT[J]. IEEE Trans Electron Devices, 2009, 56(5): 713-720. doi: 10.1109/TED.2009.2015405
    [5] Joye C D, Cook A M, Calame J P, et al. Demonstration of a high power, wideband 220 GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Trans Electron Devices, 2014, 61(6): 1672-1678. doi: 10.1109/TED.2014.2300014
    [6] Dohler G, Gagne D, Gallagher D, et al. Serpentine waveguide TWT[J]. IEEE International Electron Devices Meeting, 1987, 33(1): 478-488.
    [7] David J F, Alain J D, Mineo M, et al. Design of a terahertz cascade backward wave amplifier[J]. IEEE Trans Electron Devices, 2014, 61(6): 1715-1720. doi: 10.1109/TED.2014.2303142
    [8] Nguyen K T, Vlasov A N, Ludeking L, et al. Design methodology and experimental verification of serpentine/folded-waveguide TWTs[J]. IEEE Trans Electron Devices, 2014, 61(6): 1679-1686. doi: 10.1109/TED.2014.2303711
    [9] Bhattacharjee S, Booske J H, Kory C L. Folded waveguide traveling-wave tube sources for terahertz radiation[J]. IEEE Trans Plasma Sci, 2004, 32(3): 1002-1014. doi: 10.1109/TPS.2004.828886
    [10] Gensheimer P D, Walker C K, Ziolkowski R W, et al. Full-scale three-dimensional electromagnetic simulations of a terahertz folded-waveguide traveling-wave tube using ICEPIC[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 222-230. doi: 10.1109/TTHZ.2011.2178931
    [11] Ha H J, Han W K, Park G S, et al. Nonlinear theory of folded waveguide TWT[C]//IEEE International Vacuum Electronics Conference. 2000.
    [12] Ha H J, Jung S S, Park G S. Linear theory of a folded waveguide traveling-wave tube[J]. Journal of the Korean Physical Society, 1999, 33(3): 297-300.
    [13] Booske J H, Converse M C, Kory C L, et al. Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes[J]. IEEE Trans Electron Devices, 2005, 52(5): 685-693. doi: 10.1109/TED.2005.845798
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1114
  • HTML全文浏览量:  193
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-02
  • 修回日期:  2018-05-18
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回