留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于预群聚的回旋管注入锁相研究

马国武 卓婷婷 胡林林 孙迪敏 陈洪斌 孟凡宝

马国武, 卓婷婷, 胡林林, 等. 基于预群聚的回旋管注入锁相研究[J]. 强激光与粒子束, 2018, 30: 083004. doi: 10.11884/HPLPB201830.180025
引用本文: 马国武, 卓婷婷, 胡林林, 等. 基于预群聚的回旋管注入锁相研究[J]. 强激光与粒子束, 2018, 30: 083004. doi: 10.11884/HPLPB201830.180025
Ma Guowu, Zhuo Tingting, Hu Linlin, et al. Study on injection locked gyrotron with pre-bunched beam[J]. High Power Laser and Particle Beams, 2018, 30: 083004. doi: 10.11884/HPLPB201830.180025
Citation: Ma Guowu, Zhuo Tingting, Hu Linlin, et al. Study on injection locked gyrotron with pre-bunched beam[J]. High Power Laser and Particle Beams, 2018, 30: 083004. doi: 10.11884/HPLPB201830.180025

基于预群聚的回旋管注入锁相研究

doi: 10.11884/HPLPB201830.180025
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    马国武(1981—),男,硕士,副研究员,主要从事微波器件研究;hunter_ma@126.com

  • 中图分类号: TN722

Study on injection locked gyrotron with pre-bunched beam

  • 摘要: 开展了40 kW预群聚注入锁相回旋管的理论与模拟设计。基于全电磁仿真方法完成了预群聚腔的设计,并采用给定场理论对电子束经过预调制腔后的群聚状态进行了计算。采用自洽理论获得了回旋管的自由振荡工作参数,并计算了振荡频率随各种参数变化的规律,由此提出了锁相带宽的要求。采用PIC粒子模拟进行了锁相状态的模拟,得到7 mm漂移距离下锁定增益可达30.5 dB,相应的锁相带宽为20 MHz。如果进一步增长漂移距离或者进一步增大输入功率,锁相带宽还会增大。理论计算和粒子模拟结果表明40 kW级回旋管注入锁相具有良好的可行性。
  • 图  1  预群聚腔结构

    Figure  1.  Structure of the pre-bunching cavity

    图  2  同轴波导截止频率与半径的关系

    Figure  2.  Cut-off frequency versus radius of the coaxial waveguide

    图  3  预群聚腔的模型及腔内场分布

    Figure  3.  Model and field distribution of the pre-bunching cavity

    图  4  归一化耦合系数与注入半径的关系

    Figure  4.  Normalized coupling coefficient vs radius of the beam

    图  5  群聚因子与漂移长度的关系

    Figure  5.  Bunching factor vs drifting length

    图  6  最佳群聚位置与输入功率的关系

    Figure  6.  Best bunching position vs input power

    图  7  末腔的腔体结构和场分布

    Figure  7.  Structure and field distribution of the last cavity

    图  8  计算所得起振电流与磁场的关系

    Figure  8.  Calculated threshold current vs magnetic intensity

    图  9  自洽理论计算得到的电子束动量变化、输出功率与效率

    Figure  9.  Variation of the electronic momentum, output power and efficiency by self-consistent theory

    图  10  给定场理论计算得到的输出功率与磁场的关系

    Figure  10.  Output power versus magnetic field by fixed-profile theory

    图  11  频率漂移与磁场波动、电流波动之间的关系

    Figure  11.  Frequency shifting vs fluctuation of the magnetic field and the beam current

    图  12  频率漂移与电压波动、腔体半径变化量之间的关系

    Figure  12.  Frequency shifting vs fluctuation of the beam voltage and radius of the cavity

    图  13  预群聚注入锁定的二维PIC模型

    Figure  13.  2-D PIC model of the injection locking with pre-bunched beam

    图  14  自由振荡时的输出功率和频谱

    Figure  14.  Output power and frequency spectrum under free oscillation state

    图  15  注入锁定后的功率频谱

    Figure  15.  Output power and frequency spectrum when injection is locked

    图  16  电子束的能量变化

    Figure  16.  Variation of the energy of the beam

    图  17  锁定带宽与输入功率的关系

    Figure  17.  Locking bandwidth vs input power

  • [1] Thumm M. Recent advances in the worldwide fusion gyrotron development[J]. IEEE Trans Plasma Sci, 2014, 42(3): 590-599. doi: 10.1109/TPS.2013.2284026
    [2] Ergakov V S, Moiseev M A. Theory of synchronization of oscillations in a cyclotron-resonance maser monotron by an external signal[J]. Radiophysics & Quantum Electronics, 1975, 18(1): 89-97.
    [3] Bazhanov V S, Ergakov V S, Moiseev M A. Synchronization of CRM monotron by electron-beam modulation[J]. Radiophysics & Quantum Electronics, 1977, 20(1): 90-95.
    [4] Manheimer W M. Theory of the multi-cavity phase locked gyrotron oscillator[J]. International Journal of Electronics, 1987, 63(1): 29-47. doi: 10.1080/00207218708939106
    [5] Manheimer W M, Fliflet A W, Gold S H, et al. The NRL (Naval Research Laboratory)phase-locked gyrotron oscillator program for SDIO/IST[R]. NRL Memorandum Report 6163, 1998.
    [6] Gold S H, Fliflet A W, Black W M, et al. Highpower multi-cavity phase-locked gyrotron oscillator experiment[C]//13th Int Conf on Infrared and Millimeter Waves. 1988: 326-327.
    [7] 唐昌建, 杨中海, 刘濮鲲. 高功率回旋管锁相[J]. 强激光与粒子束, 1995, 7(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY501.006.htm

    Tang Changjian, Yang Zhonghai, Liu Pukun. Phase-locking of high power gyrotron. High Power Laser and Particle Beams, 1995, 7(1): 49-56 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY501.006.htm
    [8] Guo H Z, Hoppe D J, Rodgers J, et al. Phase-locking of a second-harmonic gyrotron oscillator using a quasi-optical circulator to separate injection and output signals[C]//IEEE Int Conf on Plasma Science. 1995: 211-212.
    [9] Jin Jianbo. Quasi-optical mode converter for a coaxial cavity gyrotron[D]. Chengdu: Southwest Jiaotong University, 2005.
    [10] 刘建卫, 赵青. 准光模式变换器研究与设计[J]. 强激光与粒子束, 2013, 25(10): 2663-2666. doi: 10.3788/HPLPB20132510.2663

    Liu Jianwei, Zhao Qing. Research and design of quasi-optical mode converter. High Power Laser and Particle Beams, 1995, 7(1): 49-56. doi: 10.3788/HPLPB20132510.2663
    [11] Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory[J]. Phys Fluids, 1986, 29(2): 561-567.
    [12] Fliflet A W, Read M E, Chu K R, et al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J]. International Journal of Electronics, 1982, 53(6): 505-521.
  • 加载中
图(17)
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  280
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-04-02
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回