Propagation characteristics of electromagnetic waves in magnetized stratified plasma
-
摘要: 采用混合矩阵法,分析了磁化分层等离子鞘套对斜入射电磁波传播特性的影响,分别计算了不同入射角以及外加磁场下电磁波透射系数和极化特性的变化。以GPS导航信号右旋圆极化波(RCP)为例,研究了磁场、电子密度对电磁波右旋圆极化特性的影响。结果表明,外加磁场能够使右旋圆极化波在等离子体中的阻带向高频方向移动,此外,外加磁场能在一定程度上改善斜入射是圆极化波的极化特性,有利于GPS信号接收。Abstract: The influence of magnetized stratified plasma sheath on the propagation characteristics of oblique electromagnetic waves is analyzed by the hybrid matrix method. The variation of transmission coefficient of electromagnetic wave with frequency under magnetic field and the polarization characteristics of electromagnetic wave with different incident angles under magnetic field are calculated respectively. Taking the GPS navigation right hand circularly polarized wave as an example, the influence of magnetic field and electron density on the right-hand circular polarization(RCP) electromagnetic wave is studied. The results show that the magnetic field can move the stop-band of the right-handed circular polarization wave towards the high frequency direction in the plasma. In addition, the magnetic field can improve the polarization characteristic of the circular polarization wave at oblique incidence to some extent, which is beneficial to the reception of the GPS signal.
-
表 1 不同电子峰密度下GPS频率右旋圆极化波随外加磁场变化
Table 1. Variation of GPS frequency right-hand circular polarization wave with magnetic field at different electron density
nepeak/m-3 transmissioncoefficient of RCP/dB B=0 T B=0.1 T B=0.3 T B=0.5 T 5×1017 -77.55 -29.70 -3.00 -1.31 1×1018 -115.17 -43.52 -5.24 -1.82 5×1018 -268.09 -99.89 -13.08 -5.33 -
[1] 吕殿君, 王小辉, 詹景坤, 等. 飞行器通信黑障的原理与消除方法[J]. 电子测试, 2016(15): 33-35, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201615017.htmLü Dianjun, Wang Xiaohui, Zhan Jingkun, et al. The principle of the aerocraft communication blackout and method of elimination. Electronic Test, 2016(15): 33-35, 84 https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201615017.htm [2] 王柏懿. 再入等离子鞘的电波传播特性[J]. 宇航学报, 1982, 3(2): 81-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB198202008.htmWang Boyi. Propagation properties of reentry plasma sheath for electromagnetic wave. Journal of Astronautics, 1982, 3(2): 81-101 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB198202008.htm [3] Liu Jiangfan, Xi Xiaoli, Wan Guobin, et al. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Transaction on Plasma Science, 2011, 39(3): 852-855. doi: 10.1109/TPS.2010.2098890 [4] 赵汉章, 吴是静, 董乃涵. 不均匀等离子体鞘套中电磁波的传播[J]. 地球物理学报, 1983, 26(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198301001.htmZhao Hanzhang, Wu Shijing, Dong Naihan. On the propagation of electromagnetic wave in an inhomogeneous plasma sheath. Chinese Journal of Geophysics, 1983, 26(1): 9-16 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198301001.htm [5] Rosen G. Method for the removal of free electrons in a plasma[J]. Phys Fluids, 1962, 5(6): 737-738. doi: 10.1063/1.1706691 [6] Sullivan L J. The early history of reentry physics research at Lincoln Laboratory[J]. The Lincoln Laboratory Journal, 1991, 4(2): 113-132. [7] Thoma C, Rose D V, Miller C L, et al. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer[J]. Appl Phys, 2009, 106(4): 1825. [8] 李江挺, 郭立新, 方全杰, 等. 等离子鞘套中的电波传播问题研究[J]. 微波学报, 2010, 60(s1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2010S1006.htmLi Jiangting, Guo Lixin, Fang Quanjie, et al. Study of the propagation of electromagnetic waves in plasma sheath. Journal of Microwaves, 2010, 60(s1): 11-14 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2010S1006.htm [9] Zhou Hui, Li Xiaoping, Liu Yanming, et al. Effects of nonuniform magnetic field on the "magnetic window" in blackout mitigation[J]. IEEE Transactions on Plasma Science, 2017, 45(1): 15-23. [10] Bai Bowen, Li Xiaoping, Liu Yanming, et al. Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3365-3372. [11] Ning J, Tan E L. Simple and stable analysis of multilayered anisotropic materials for design of absorbers and shields[J]. Materials & Design, 2009, 30(6): 2061-2066. [12] Berreman D W. Optics in stratified and anisotropic layered media: 4×4 matrix formulation[J]. J Opt Soc Am, 1972, 62(4): 502-510. [13] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射和透射[J]. 物理学报, 2000, 49(9): 1702-1705. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200009009.htmZheng Hongxing, Ge Debiao. Electromagnetic wave reflection and transmission of anisotropic layered media by generalized propagation matrix method. Acta Physica Sinica, 2000, 49(9): 1702-1705 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200009009.htm [14] Rawhouser R. Overview of the AF avionics laboratory reentry electromagnetics program[C]//NASA Special Publication, 1970, SP-252: 3-17. [15] Bakanis C A. Advanced engineering electromagnetics[M]. USA: John Wiley & Sons, 2013. -