留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器栅极组件温度场仿真分析及试验研究

梁秀强 袁杰红 周仕明

梁秀强, 袁杰红, 周仕明. 离子推力器栅极组件温度场仿真分析及试验研究[J]. 强激光与粒子束, 2018, 30: 114001. doi: 10.11884/HPLPB201830.180208
引用本文: 梁秀强, 袁杰红, 周仕明. 离子推力器栅极组件温度场仿真分析及试验研究[J]. 强激光与粒子束, 2018, 30: 114001. doi: 10.11884/HPLPB201830.180208
Liang Xiuqiang, Yuan Jiehong, Zhou Shiming. Simulation and experimental study on temperature field of ion thruster's grids assembly[J]. High Power Laser and Particle Beams, 2018, 30: 114001. doi: 10.11884/HPLPB201830.180208
Citation: Liang Xiuqiang, Yuan Jiehong, Zhou Shiming. Simulation and experimental study on temperature field of ion thruster's grids assembly[J]. High Power Laser and Particle Beams, 2018, 30: 114001. doi: 10.11884/HPLPB201830.180208

离子推力器栅极组件温度场仿真分析及试验研究

doi: 10.11884/HPLPB201830.180208
基金项目: 

真空低温技术与物理国家级重点实验室开放基金项目 ZWK_1702

详细信息
    作者简介:

    梁秀强(1993—),男,硕士研究生,主要从事结构失效分析与优化的研究;liangxiuqiang1993@163.com

  • 中图分类号: V439.4

Simulation and experimental study on temperature field of ion thruster's grids assembly

  • 摘要: 栅极组件热变形是影响离子推力器工作性能及工作寿命的主要因素,为研究栅极组件升温过程中温度场分布及变化规律,探索能较准确模拟栅极温度场的方法,建立了栅极组件1/12全尺寸有限元模型进行温度场仿真计算。同时,基于实验室搭建的温度测量平台,测量了大气环境下加热时栅极组件的瞬态温度变化。对比有限元分析求解与试验过程中的温度场,加速栅平均误差为14.4%,屏栅平均误差为9.7%,双栅最大误差不超过18.4%,验证了有限元模型及方法的可信度和合理性。
  • 图  1  栅极组件有限元模型

    Figure  1.  FEM model of grids assembly

    图  2  加热设备

    Figure  2.  Heating equipment

    图  3  测温设备及测温点

    Figure  3.  Temperature measuring equipment and points

    图  4  栅极组件8 s的温度分布云图

    Figure  4.  Transient temperature field of grids assembly at 8 s

    图  5  栅极组件800 s的温度分布云图

    Figure  5.  Transient temperature field of grids assembly at 800 s

    图  6  各时刻温度沿径向坐标分布曲线

    Figure  6.  Temperature distribution along radial axis

    图  7  T1至T5测温点温度变化曲线及稳态温度分布曲线

    Figure  7.  Experiment and simulation results of termocouple points T1 to T5 and steady-state temperature distribution

    表  1  各加热管表面温度

    Table  1.   Surface temperature of heating tubes

    heating tube number temperature/℃
    1 635
    2 608
    3 512
    4 455
    5 422
    下载: 导出CSV

    表  2  加速栅测温点稳态温度试验与仿真对比

    Table  2.   Comparison of steady-state temperature between simulation and experiment for accelerator grid

    thermocouple point temperature of FEM/℃ temperature of experiment/℃ error /%
    T1 176 198 11.1
    T2 175 202 13.4
    T3 155 190 18.4
    T4 130 154 16.0
    T5 110 124 11.3
    下载: 导出CSV

    表  3  屏栅测温点稳态温度试验与仿真对比

    Table  3.   Comparison of steady-state temperature between simulation and experiment for screen grid

    thermocouple point temperature of FEM/℃ temperature of experiment/℃ error /%
    T1 284 322 11.8
    T2 284 310 8.4
    T3 244 262 6.9
    T4 197 186 5.9
    T5 151 131 15.3
    下载: 导出CSV
  • [1] Hayakawa Y, Yoshida H, Miyazaki K, et al. Validation of an ion-thruster grid thermal model with experiments[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2010.
    [2] Hayakawa Y, Yoshida H, Miyazaki K, et al. Thermo-elastic analyses of ion-thruster grids[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2006.
    [3] 孙明明, 张天平, 贾艳辉. 30 cm离子推力器栅极组件热形变位移分析研究[J]. 真空与低温, 2017, 23(6): 349-354. doi: 10.3969/j.issn.1006-7086.2017.06.008

    Sun Mingming, Zhang Tianping, Jia Yanhui. The thermal deformation displacement analysis of the grids for a 30 cm diameter ion thruster. Vacuum & Cryogenics, 2017, 23(6): 349-354 doi: 10.3969/j.issn.1006-7086.2017.06.008
    [4] 孙明明, 张天平, 王亮, 等. 30 cm离子推力器栅极组件热应力及热形变计算模拟[J]. 推进技术, 2016, 37(7): 1393-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201607026.htm

    Sun Mingming, Zhang Tianping, Wang Liang, et al. Thermal stress and thermal deformation analysis of grids assembly for 30 cm diameter ion thruster. Journal of Propulsion Technology, 2016, 37(7): 1393-1400 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201607026.htm
    [5] Trava-Airoldi V J, Garner C E, Pivirotto T J, et al. An optical technique to measure ion engine grid distortion due to differential thermal expansion[C]//21st International Electric Propulsion Conference. 1990.
    [6] MacRae G S, Zavesky R J, Gooder S T. Structural and thermal response of 30 cm diameter ion thruster optics[C]//25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 1989.
    [7] Soulas G, Frandina M. Ion engine grid gap measurements[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2004.
    [8] Bundesmann C, Tartz M, Scholze F, et al. In situ thermal characterization of the accelerator grid of an ion thruster[J]. Journal of Propulsion & Power, 2011, 7(27): 532-537.
    [9] 梁秀强, 袁杰红, 周仕明. 离子推力器栅极组件有限元的建模及热变形研究[J]. 真空与低温, 2018, 24(4): 242-245. doi: 10.3969/j.issn.1006-7086.2018.04.006

    Liang Xiuqiang, Yuan Jiehong, Zhou Shiming. Study on finite element modeling and thermal deformation of ion thruster's grids assembly. Vacuum & Cryogenics, 2018, 24(4): 242-245 doi: 10.3969/j.issn.1006-7086.2018.04.006
    [10] 赵镇南. 传热学[M]. 2版. 北京. 高等教育出版社, 2008.

    Zhao Zhennan. Heat transfer. 2nd ed. Beijing: Higher Education Press, 2008
    [11] Holman J P. Heat transfer[M]. New York: McGraw-Hill, 1990.
    [12] 孙明明, 张天平, 陈娟娟, 等. LIPS-200离子推力器热特性模拟分析研究[J]. 强激光与粒子束, 2014, 26: 084002. doi: 10.11884/HPLPB201426.084002

    Sun Mingming, Zhang Tianping, Chen Juanjuan, et al. Thermal analysis of LIPS-200 ion thruster. High Power Laser and Particle Beams, 2014, 26: 084002 doi: 10.11884/HPLPB201426.084002
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  251
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-31
  • 修回日期:  2018-09-23
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回