Coarse normal height estimation algorithm for satellite navigation receivers
-
摘要: 为了将卫星导航接收机输出的导航解应用于飞行器导航和武器发射测试等应用领域,需要将导航解中的大地高数值转换为概略正常高数值,但是不同应用领域对于概略正常高的需求是不同的。为了满足不同精度的概略正常高估计需求,实现以较短的计算时间和较小的存储空间开销来支撑实际的卫星导航接收机应用,提出了一种基于简化EGM96模型的概略正常高估计算法。以基于360阶360次EGM96地球重力场模型和2190阶2159次EGM2008地球重力场模型的计算结果为基准,统计了该概略正常高估计算法的计算时间和计算精度等指标。通过在全球格网点和亚太区域格网点测试结果的比较分析可知,该概略正常高估计算法可以求解不同精度等级的概略正常高,能够满足卫星导航接收机在亚太区域以及全球范围内的概略正常高估计的精度和时效性要求。Abstract: In order to apply the navigation solution output from the satellite navigation receiver to applications such as aircraft navigation and weapon launching testing, it is necessary to convert the geodetic height of the navigation solution to coarse normal height, but the demands for the coarse normal height in different application fields are different. To meet the normal height estimation requirements of different precisions, and to support the actual satellite navigation receiver application with low running time and storage space overhead, this paper proposes a coarse normal height estimation algorithm based on the simplified EGM96 model. Adopting the 360-degree 360-order EGM96 Earth gravity field model and the 2190-degree 2159-order EGM2008 Earth gravity field model, the running time and calculation accuracy of the coarse normal height estimation algorithm are evaluated. The test and comparative analysis of the grid points in the global region and the Asia-Pacific region show that the coarse normal height estimation algorithm can obtain the coarse normal height at different levels of accuracy, meeting the accuracy and timeliness requirements of the coarse normal height estimation with the satellite navigation receiver in the Asia-Pacific region and the global region.
-
表 1 基于降阶次的EGM96模型计算全球区域概略高程异常相对精度统计
Table 1. Relative accuracy statistic of the height anomaly computation method with reduced order EGM96 model on the global grids
order number relative error with EGM96 (360×360) model/m relative error with EGM2008 (2190×2159) model/m 160 0.30 0.55 140 0.35 0.59 120 0.42 0.64 100 0.51 0.69 90 0.56 0.73 80 0.63 0.79 70 0.72 0.85 60 0.81 0.92 50 0.94 1.03 40 1.08 1.15 30 1.37 1.42 表 2 基于降阶次EGM96模型计算亚太区域概略高程异常相对精度统计
Table 2. Relative accuracy statistic of the height anomaly computation method with reduced order EGM96 model on the Aisa-Pacific grids
order number relative error with EGM96 (360×360) model/m relative error with EGM2008 (2190×2159) model/m 160 0.38 0.50 140 0.44 0.55 120 0.54 0.64 100 0.65 0.73 90 0.72 0.80 80 0.82 0.89 70 0.91 0.97 60 1.03 1.09 50 1.22 1.25 40 1.39 1.41 30 1.61 1.62 表 3 基于不同阶次EGM96模型的全球格网高程异常计算时间
Table 3. The average computation time consumption results for height anomaly with EGM96 models of different orders on the global grids
order number average computation time consumption of each grid point/ms 160 15.7 140 15.5 120 15.4 100 15.3 90 15.3 80 15.2 70 15.8 60 15.6 50 15.0 40 14.9 30 14.7 -
[1] 朱雷鸣. 基于相对高程异常差平差法的区域似大地水准面精化[D]. 郑州: 信息工程大学, 2011.Zhu Leiming. Improvement of regional quasi-geoid based on relative height anomaly difference compensation method. Zhengzhou: Information Engineering University, 2011 [2] 孔祥元, 郭际明, 刘宗泉. 大地测量学基础[M]. 第2版. 武汉: 武汉大学出版社, 2010.Kong Xiangyuan, Guo Jiming, Liu Zongquan. Foundation of geodesy. 2nd. Wuhan: Wuhan University Press, 2010 [3] 张翼飞, 杨辉, 王孝通. 应用于地形匹配导航的激光高度计设计[J]. 强激光与粒子束, 2011, 23(12): 3260-3264. http://www.hplpb.com.cn/article/id/5690Zhang Yifei, Yang Hui, Wang Xiaotong. Design of a laser altimeter applied to terrain matching guidance. High Power Laser and Particle Beams, 2011, 23(12): 3260-3264 http://www.hplpb.com.cn/article/id/5690 [4] 张雷. 基于人工神经网络的GPS高程异常拟合方法的研究与实现[D]. 西安: 长安大学, 2012.Zhang Lei. Study on and realization of GPS height anomaly fitting method based on artificial neural network. Xi'an: Chang'an University, 2012 [5] 李建成. 我国现代高程测定关键技术若干问题的研究及进展[J]. 武汉大学学报(信息科学版), 2007, 32(11): 980-987. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200711011.htmLi Jiancheng. Study and progress in theories and crucial techniques of modern height measurement in China. Geomatics and Information Science of Wuhan University, 2007, 32(11): 980-987 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200711011.htm [6] 左虎, 范东明. GPS高程转换的新方法[J]. 铁道勘察, 2006, 32(6): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC200606002.htmZuo Hu, Fan Dongming. New method for GPS height conversion. Railway Investigation and Surveying, 2006, 32(6): 6-8 https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC200606002.htm [7] 路媛琦, 章传银, 李圳. EGM2008模型在GPS高程转换中的适用性探讨[J]. 城市勘测, 2017(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CSKC201701019.htmLu Yuanqi, Zhang Chuanyin, Li Zhen. Discussion on the applicability of EGM2008 model in GPS height conversion. Urban Geotechnical Investigation & Surveying, 2017(1): 91-94 https://www.cnki.com.cn/Article/CJFDTOTAL-CSKC201701019.htm [8] 郑加平. 基于兰新线带状地区EGM2008模型GPS高程转换及适用性研究[J]. 时代经贸, 2013(6): 228-229.Zheng Jiaping. GPS height conversion based on Lanzhou-Xinjiang railway line band regional EGM2008 model and applicability study. Economic & Trade Update, 2013(6): 228-229 [9] 彭小强, 高井祥, 王坚. WGS84和CGCS2000坐标转换研究[J]. 大地测量与地球动力学, 2015, 35(2): 219-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502011.htmPeng Xiaoqiang, Gao Jingxiang, Wang Jian. Research of the coordinate conversion between WGS84 and CGCS2000. Journal of Geodesy and Geodynamics, 2015, 35(2): 219-221 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502011.htm [10] 杨元喜, 李金龙, 王爱兵, 等. 北斗区域卫星导航系统基本导航定位性能初步评估[J]. 中国科学: 地球科学, 2014, 44(1): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401008.htmYang Yuanxi, Li Jinlong, Wang Aibing, et al. Preliminary assessment of the navigation and positioning performance of BeiDou Regional Navigation Satellite System. Science China: Earth Sciences, 2014, 44(1): 72-81 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401008.htm