留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X~Ku波段宽带驱动放大器设计

周守利 陈瑞涛 周赡成 李如春

周守利, 陈瑞涛, 周赡成, 等. X~Ku波段宽带驱动放大器设计[J]. 强激光与粒子束, 2019, 31: 033002. doi: 10.11884/HPLPB201931.180342
引用本文: 周守利, 陈瑞涛, 周赡成, 等. X~Ku波段宽带驱动放大器设计[J]. 强激光与粒子束, 2019, 31: 033002. doi: 10.11884/HPLPB201931.180342
Zhou Shouli, Chen Ruitao, Zhou Shancheng, et al. Design of X~Ku band broadband driver amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 033002. doi: 10.11884/HPLPB201931.180342
Citation: Zhou Shouli, Chen Ruitao, Zhou Shancheng, et al. Design of X~Ku band broadband driver amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 033002. doi: 10.11884/HPLPB201931.180342

X~Ku波段宽带驱动放大器设计

doi: 10.11884/HPLPB201931.180342
基金项目: 

中国科学院空间科学战略性科技先导专项基金项目 XDA04060300

中国博士后科学基金项目 2013M540147

详细信息
    作者简介:

    周守利(1972-), 男,副教授,博士后,主要从事复杂航空系统电子信息技术研究;zhoushl@zjut.edu.cn

  • 中图分类号: TN432

Design of X~Ku band broadband driver amplifier

  • 摘要: 基于SiC衬底的0.25 μm GaN HEMT工艺,设计了一款X~Ku波段宽带1 W驱动放大器单片微波集成电路。设计使用了一种有源器件的大信号输出阻抗的等效RC模型验证了GaN HEMT工艺模型的准确性,并获得了不同尺寸的GaN HEMT的大信号输出阻抗。第一级管芯采用负反馈结构,降低匹配网络的Q值,通过带通匹配网络拓扑,实现了宽带匹配。测试结果表明,在28 V的工作电压下,8~18 GHz的频率内驱动放大器实现了输出功率大于30 dBm,功率附加效率大于21%,功率增益大于15 dB。芯片尺寸为:2.20 mm×1.45 mm。该芯片电路具有频带宽、效率高、尺寸小的特点,主要用于毫米波收发组件、无线通讯等领域,具有广泛的应用前景。
  • 图  1  大信号输出阻抗的等效RC模型

    Figure  1.  Equivalent RC model of large-signal output impedance

    图  2  RpCp随频率变化曲线

    Figure  2.  The Rp and Cp parameters versus frequency

    图  3  8~18 GHz效率点阻抗RC模型、测试数据和GaN HEMT PDK模型比较

    Figure  3.  Comparison of 8~18 GHz efficiency point impedance with RC model, measured and with GaN HEMT PDK model

    图  4  驱动放大器的电路拓扑

    Figure  4.  The circuit topology of driver amplifier

    图  5  带通匹配网络拓扑

    Figure  5.  Band-pass matching network topology

    图  6  驱动放大器的芯片照片

    Figure  6.  Photograph of driver amplifier's chip

    图  7  驱动放大器的夹具照片

    Figure  7.  Photograph of fixture's of driver amplifier

    图  8  输出功率、增益和功率附加效率随频率变化的测试结果

    Figure  8.  Measured output power, gain, and PAE versus frequency

    图  9  小信号增益和输入反射系数随频率变化的测试结果

    Figure  9.  Measured small signal gain and input reflection coefficient versus frequency

    图  10  在17 GHz的输出功率、功率增益和功率附加效率随输入功率变化的测试结果

    Figure  10.  Measured output power, gain, and PAE versus input power at 17 GHz frequency

    图  11  不同输入功率下的输出功率随频率变化的测试结果

    Figure  11.  Measured output power versus frequency at different input power

  • [1] Fagotti R, Cidronali A, Manes G. Concurrent Hex-Band GaN power amplifier for wireless communication systems[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(2): 89-91. doi: 10.1109/LMWC.2010.2098859
    [2] Zhou Xing, Roy L, Amaya R E. 1 W, Highly efficient, ultra-broadband non-uniform distributed power amplifier in GaN[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(4): 208-210. doi: 10.1109/LMWC.2013.2250270
    [3] Chu Chenkuo, Huang H, Liu Hongzhi, et al. An X-band high-power and high-PAE PHEMT MMIC power amplifier for pulse and CW operation[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(10): 707-709. doi: 10.1109/LMWC.2008.2003485
    [4] Yao Hongfei, Yuan Tingting, Liu Guoguo, et al. X-band 11. 7-W, 29-dB gain, 42% PAE three-stage pHEMT MMIC power amplifier[C]//IEEE 2015 Asia-pacific Microwave Conference. 2015: 1-3.
    [5] Qorvo. X band driver PA, TGA2700[OL]. http://www.triquint.com/products/p/TGA2700.
    [6] 曾志, 徐全胜, 高学邦. X波段宽带单片驱动功率放大器[J]. 半导体技术, 2013, 38(6): 424-428. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201306008.htm

    Zeng Zhi, Xu Quansheng, Gao Xuebang. X-band broadband monolithic drive power amplifier. Semiconductor Technology, 2013, 38(6): 424-428 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201306008.htm
    [7] 李远鹏, 赵炳忠, 魏洪涛, 等. 6~18 GHz宽带驱动放大器的研制[J]. 半导体技术, 2016, 41(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201606006.htm

    Li Yuanpeng, Zhao Bingzhong, Wei Hongtao, et al. Design of a 6~18 GHz broadband driver amplifier. Semiconductor Technology, 2016, 41(6): 425-428 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ201606006.htm
    [8] Quaglia R, Camarchia V, Rubio J J M, et al. A 4-W Doherty power amplifier in GaN MMIC technology for 15-GHz applications[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 365-367. doi: 10.1109/LMWC.2017.2678440
    [9] Kuwata E, Yamanaka K, Kirikoshi T, et al. C-Ku band 120% relative bandwidth high efficiency high power amplifier using GaN HEMT[C]//IEEE 2009 Asia-pacific Micromave Conference. 2009: 1663-1666.
    [10] Kuhn J, Raay F V, Quay R, et al. Design of X-band GaN MMICs using field plates[C]//IEEE European Microwve Integnated Circuits Conference. 2009: 33-36.
    [11] Lee S, Park H, Choi K, et al. A broadband GaN pHEMT power amplifier using non-Foster matching[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4406-4414. doi: 10.1109/TMTT.2015.2495106
    [12] Chen K, Peroulis D. Design of highly efficient broadband Class-E power amplifier using synthesized low-pass matching networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3162-3173. doi: 10.1109/TMTT.2011.2169080
    [13] Schmid U, Sledzik H, Schuh P, et al. Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(8): 3043-3051. doi: 10.1109/TMTT.2013.2268055
    [14] Barisich G C, Gebara E, Gu Huifang, et al. Reactively matched 3-stage C-X-Ku band GaN MMIC power amplifier[C]//IEEE European Microwave Integrated Circuits Conference. 2017: 93-96.
    [15] Formicone G, Burger J, Custer J, et al. A study for achieving high power and efficiency based on high bias operation in C- and X-band GaN power amplifiers[C]//IEEE Conference on RF/Microwave Power Amplifiers for Radio and Wireless Application. 2018: 39-42.
    [16] Meng Xiangyu, Yu Cuiping, Liu Yuanan, et al. Design approach for implementation of Class-J broadband power amplifiers using synthesized band-pass and low-pass matching topology[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 4984-4996. doi: 10.1109/TMTT.2017.2711021
  • 加载中
图(11)
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  249
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2019-02-24
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回