留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用

李俊辛 刘强 闫丽萍 赵翔 孟雪松 周海京

李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31: 053202. doi: 10.11884/HPLPB201931.190026
引用本文: 李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31: 053202. doi: 10.11884/HPLPB201931.190026
Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202. doi: 10.11884/HPLPB201931.190026
Citation: Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202. doi: 10.11884/HPLPB201931.190026

基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用

doi: 10.11884/HPLPB201931.190026
基金项目: 

国家自然科学基金项目 61877041

详细信息
    作者简介:

    李俊辛(1992—),男,硕士,主要从事电磁场数值计算方面的研究;andy_ruohan@outlook.com

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析与电磁效应评估方面的研究;liping_yan@scu.edu.cn

  • 中图分类号: O441.4

JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction

  • 摘要: 时域有限差分(FDTD)中采用环路法(CP)进行复杂金属细缝结构建模,可突破细缝结构对空间步长的约束而大大减少计算资源的消耗。提出CP-FDTD在大规模并行化平台的建模方法,通过对工程金属细缝结构自动建模以及对CP算法的自动适配,实现CP-FDTD的并行化处理。利用所开发的并行CP-FDTD算法分析了开不同工程细缝金属腔在0.05~3.00 GHz内的电磁屏蔽效能,结果表明所开发的具有金属细缝建模功能的并行化CP-FDTD自动适配处理技术,与加密网格的传统FDTD(fine-FDTD)计算结果吻合良好,且计算效率显著提升。
  • 图  1  Yee网格中的细缝及环路法示意图

    Figure  1.  Thin slot in the Yee's cell and the schematic diagram of contour path(CP) method

    图  2  位于金属面板上的环形缝模型

    Figure  2.  An annular seam on a metal plate

    图  3  含不同形状细缝的网格

    Figure  3.  Cells with thin slots in different shape

    图  4  type3类型网格在各个面上的积分路径

    Figure  4.  Contour path of thin slot in type3 cell on each plane

    图  5  CP算法在JASMIN并行化平台的数据架构

    Figure  5.  Data architecture of CP algorithm in JASMIN parallelization platform

    图  6  居于子patch计算空间中的环形缝模型

    Figure  6.  Annular seam in the sub-patch calculation space

    图  7  带有多种不同细缝结构的金属腔

    Figure  7.  Metal cavity with multiple thin slots

    图  8  不同极化方式下金属腔中心点SE计算结果的对比

    Figure  8.  SE prediction at the center of the enclosure for vertical and horizontal polarizations using CP-FDTD and fine-FDTD

    图  9  斜入射时的计算模型

    Figure  9.  Calculation model for oblique incidence

    图  10  平面波斜入射条件下金属腔中心点SE计算结果的对比

    Figure  10.  SE prediction at the center of the enclosure with oblique incident plane wave

    图  11  CP-FDTD并行程序加速比与运算核心数的关系

    Figure  11.  Speedup ratio of parallel CP-FDTD program with respect to the number of CPU cores

    表  1  不同极化方式下金属腔内主要谐振频点和相应模式

    Table  1.   Main resonant frequency points and modes of the metal enclosure with different polarization

    vertical polarization frequency/GHz 0.77 1.17 1.64 2.20 2.31 2.64 2.75
    resonant mode TE101 TE102/TE201 TE103/TE301 TE303 TE312/TM312 TE105/TE501 TE120/TM120
    horizontal frequency/GHz 1.46 1.70 1.78 2.07 2.30 2.69 2.92
    polarization resonant mode TE011 TE012 TE211/TM211 TE013 TE213/TM213 TE214/TM214/TE412/TM412 TE015
    下载: 导出CSV

    表  2  Fine-FDTD与CP-FDTD的计算成本对比

    Table  2.   Comparison of calculation cost between fine-FDTD and CP-FDTD

    model method total cells computation time/min
    model in Fig. 7 fine-FDTD
    CP-FDTD
    5.44×106
    0.64×106
    836.50
    77.94
    model in Fig. 9 fine-FDTD
    CP-FDTD
    4.35×106
    0.64 ×106
    784.84 72.11
    下载: 导出CSV
  • [1] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves. 3rd ed. Xi'an: Xidian University Press, 2011
    [2] Kuo C W, Kuo C M. Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel subgridding algorithm[J]. IEEE Trans Electromagnetic Compatibility, 2016: 1-7.
    [3] Bérenger J P. The Huygens subgridding for the numerical solution of the Maxwell equations[J]. Journal of Computational Physics, 2011, 230(14): 5635-5659. doi: 10.1016/j.jcp.2011.03.046
    [4] Huang Z. A synchronized multigrid time domain method via Huygens subgridding and implicit algorithms[J]. IEEE Trans Antennas & Propagation, 2013, 61(5): 2605-2614.
    [5] Wang Jianbao, Wang Jinlong, Zhou Bihua, et al. An efficient 3-D HIE-FDTD method with weaker stability condition[J]. IEEE Trans Antennas & Propagation, 2016, 64(3): 998-1004.
    [6] Movahhedi M, Abdipour A, Nentchev A, et al. Alternating-direction implicit formulation of the finite-element time-domain method[J]. IEEE Trans Microwave Theory and Techniques, 2007, 55(6): 1322-1331. doi: 10.1109/TMTT.2007.897777
    [7] Xiong Run, Chen Bin, Yin Qin, et al. Improved formalism for the FDTD analysis of thin-slot penetration by equivalence principle[J]. IEEE Antennas & Wireless Propagation Letters, 2011, 10(10): 655-657.
    [8] Wu C T, Pang Y H, Wu R B. An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique[J]. IEEE Trans Antennas and Propagation, 2003, 51(9): 2530-2533. doi: 10.1109/TAP.2003.816382
    [9] 孙大伟, 俞集辉. 屏蔽分析中的三维FDTD细孔缝模型[J]. 电工技术学报, 2006, 21(10): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200610002.htm

    Sun Dawei, Yu Jihui, A 3D thin slot model by FDTD for shielding analysis, Transactions of China Electrotechnical Society, 2006, 21(10): 7-11 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200610002.htm
    [10] 方明江, 刘强, 闫丽萍, 等. 含三维复杂工程细缝金属腔的电磁屏蔽效能评估[J]. 强激光与粒子束, 2018, 30: 073201. doi: 10.11884/HPLPB201830.180047

    Fang Mingjiang, Liu Qiang, Yan Liping, et al. Evaluation of electromagnetic shielding effectiveness for metallic enclosure with complex thin slots. High Power Laser and Particle Beams, 2018, 30: 073201 doi: 10.11884/HPLPB201830.180047
    [11] Li Hanyu, Zhou Haijing, Liu Yang, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]//IEEE International Symposium on Electromagnetic Compatibility. 2014.
    [12] Cao Xiaolin, Zhang Aiqing, Liu Qingkai. Software quality assurance for the development of JASMIN infrastructure[C]//IEEE International Conference on Software Engineering & Applications. 2015.
    [13] 莫则尧, 张爱清. 并行自适应结构网格应用支撑软件框架(JASMIN2.0版)用户指南[G]. 2011.

    Mo Zeyao, Zhang Aiqing. User guide of J parallel adaptive structured mesh applications infrastructure(JASMIN 2.0). 2011
    [14] 张青洪, 廖成, 李瀚宇, 等. 基于JASMIN框架的抛物方程有限差分解法并行计算及其应用[J]. 强激光与粒子束, 2015, 27: 083204. doi: 10.11884/HPLPB201527.083204

    Zhang Qinghong, Liao Cheng, Li Hanyu, et al. Parallel computing of finite difference algorithm for parabolic equation based on JASMIN and its application. High Power Laser and Particle Beams, 2015, 27: 083204 doi: 10.11884/HPLPB201527.083204
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  255
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-30
  • 修回日期:  2019-03-20
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回