Optical properties of wide-angle velocity interferometer system for any reflector
-
摘要: 研究了广角任意反射面速度干涉仪(VISAR)的光学性质。阐述了广角VISAR的原理,指出广角诊断靶中椭球镜的作用是将靶丸内表面成虚像在靶丸中心附近。使用Zemax模拟了成像弯曲对动态干涉条纹形成的影响,提出使用异形光纤面板进行像面矫正。研究了工程误差对干涉仪成像的影响,若要取得良好的成像效果,椭球镜的位置偏差不得多于30 μm,倾角不得超过4°,长轴方向加工误差需小于0.1 μm,短轴方向误差需小于4 μm,镜面反射率应高于70%。讨论了广角VISAR光学研究的进一步发展方向如影响动态条纹的更多可能因素、像面矫正的其他方法、物与像面的光学对应等。
-
关键词:
- 任意反射面速度干涉仪 /
- 广角诊断 /
- 装配误差 /
- 惯性约束聚变
Abstract: Optical properties of wide-angle velocity interferometer system for any reflector (VISAR) are studied in this paper. The principle of wide-angle VISAR is expounded. It reveals that the role of the ellipsoid in wide-angle VISAR is to make the inner surface of capsule into a curved virtual image at the center of target. The effect of imaging bending on the formation of dynamic interference fringes is simulated by Zemax and a shaped optical fiber plate is proposed for image correction. The influence of assembly error is also studied. To obtain a good imaging result, the positional deviation of the ellipsoidal mirror should not exceed 30 μm, the inclination should not exceed 4°, the manufacturing error requires less than 0.1 μm in long axis direction and 4 μm in short axis direction, and reflectance needs to be higher than 70%. More possible factors of affecting dynamic fringes, other methods of imaging correction, correspondence between object and image are discussed, along with the potential development of wide-angle VISAR. The optical properties of wide-angle VISAR is a basis for improving the wide-angle diagnostic capability, and is of great significance for the quantitative observation for driving symmetry of capsule in inertial confinement fusion. -
图 2 (a) 模拟使用的简化广角VISAR模型(b)探测面放置不同位置得到的干涉条纹(c)瞄靶情况(d)神光Ⅲ原型20171127214发次广角VISAR实验结果(e)成像优化方案(f)像面矫正前后样点的成像情况
Figure 2. (a) Simplified wide-angle VISAR model in simulation, (b) the interference fringe pattern that the detection surface is placed at different locations, (c) static imaging, (d) results of 20171127214 wide-angle VISAR shooting, (e) imaging optimization scheme and (f) imaging of sample points before and after correction
表 1 像面功率随Δy, Δr的变化
Table 1. Light intensity on the image surface under different position errors
表 2 像面功率随Δθ的变化
Table 2. Light intensity on the image surface under different Δθ
表 3 像面功率随Δm/m的变化
Table 3. Light intensity on the image surface under different Δm/m
表 4 像面功率随η的变化
Table 4. Light intensity on the image surface under different η
-
[1] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0 [2] Lindl J. Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2: 3933. doi: 10.1063/1.871025 [3] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: A review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714 [4] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170 [5] Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001, 8(5): 2245-2250. . doi: 10.1063/1.1347037 [6] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986 [7] Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320. doi: 10.1063/1.121882 [8] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008 [9] Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nucl Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed [10] Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008 [11] Robey H F, Boehly T R, Olson R E, et al. Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 012703. doi: 10.1063/1.3276154 [12] Piriz A R. Conditions for the ignition of imploding spherical shell targets[J]. Nuclear Fusion, 1996, 36(10): 1395. doi: 10.1088/0029-5515/36/10/I13 [13] Petrasso R D. Rayleigh's challenge endures[J]. Nature, 1994, 367(6460): 217-218. doi: 10.1038/367217a0 [14] Batani D, Casner A, Depierreux S, et al. Physics issues for shock ignition[J]. Nuclear Fusion, 2014, 54: 054009. doi: 10.1088/0029-5515/54/5/054009 [15] Tikhonchuk V T, Colaïtis A, Vallet A, et al. Physics of laser-plasma interaction for shock ignition of fusion reactions[J]. Plasma Physics and Controlled Fusion, 2015, 58: 014018. [16] Soubiran F, Mazevet S, Winisdoerffer C, et al. Optical signature of hydrogen-helium demixing at extreme density-temperature conditions[J]. Physical Review B, 2013, 87: 165114. doi: 10.1103/PhysRevB.87.165114 [17] Callahan D A, Meezan N B, Glenzer S H, et al. The velocity campaign for ignition on NIF[J]. Physics of Plasmas, 2012, 19: 056305. doi: 10.1063/1.3694840 [18] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528 [19] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502 [20] Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92: 075002. doi: 10.1103/PhysRevLett.92.075002 [21] Murakami M, Nagatomo H, Johzaki T, et al. Impact ignition as a track to laser fusion[J]. Nuclear Fusion, 2014, 54: 054007. doi: 10.1088/0029-5515/54/5/054007 [22] McWilliams R S, Eggert J H, Hicks D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa[J]. Physical Review B, 2010, 81: 014111. doi: 10.1103/PhysRevB.81.014111 [23] Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136 [24] Robey H F, Moody J D, Celliers P M, et al. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF[J]. Physical Review Letters, 2013, 111: 065003. doi: 10.1103/PhysRevLett.111.065003 [25] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(12): 156-160. -