Estimating the profiles of atmospheric turbulence above Korla, Maoming, Lhasa by Thorpe scale
-
摘要: 在新疆库尔勒、广东茂名海边、西藏拉萨三个地区释放的探空气球, 实现了温度、气压、风速等常规气象参数以及大气折射率结构常数的廓线测量。基于Tatarski湍流参数化方案以及以上地区探空数据, 利用Thorpe尺度估算了新疆库尔勒、广东茂名海边、西藏拉萨三个地区的高空大气光学湍流廓线, 并将这三个地区实测的廓线与其对应的估算结果做了对比, 结果表明: 估算值与实测值在量级和变化趋势上表现出较好的一致性, 相关性分别为69%, 60%, 68%;Thorpe尺度相较于其他估算湍流廓线的参数化方法输入参数少、更简便。Abstract: The sounding balloons released from Korla, Maoming, Guangdong and Lhasa, Tibet, have been used to measure the profiles of temperature, air pressure and wind velocity and the refractive index structure constants of the atmosphere.Based on the optical turbulence parameterization of Tatarski theory and the above-mentioned areas sounding data, the atmospheric optical turbulence profiles in three regions, Korla, Xinjiang the coast of Maoming, Guangdong and Lhasa, Tibet, are estimated by using Thorpe scale.Estimated results are compared with measured profiles in these three regions.The estimated values and the measured values are in good agreement with each other in the order of magnitude and the trend of change, and the correlation are69%, 60%, 68%, respectively.In addition, compared with other parameterized methods for estimating turbulence profiles, the Thorpe scale is simple and has less input parameters.
-
Key words:
- atmospheric optics /
- turbulence profile /
- Thorpe scale /
- turbulence parameterization
-
表 1 三地实验记录
Table 1. Experimental information of three sites
site latitude andlongitude height abovesea level/m observationtime effective totalnumber detectionparameters Korla 41.68°N
86.06°E950 2015.11 21 temperature/pressure wind direction/wind speed Cn2 Maoming 21.40°N
110.53°E30 2016.12—2017.01 21 temperature/pressure wind direction/wind speed humidity/Cn2 Lhasa 29.97°N
91.11°E3650 2018.08 9 temperature/pressure wind direction/wind speed humidity/Cn2 表 2 三地估测值与实测值相关性及c1值统计
Table 2. Statistics of the correlation between the estimated value and c1 value in three areas
site correlation/% c1 Korla 69 0.12 Maoming 60 0.14 Lhasa 68 0.75 -
[1] 袁仁民, 曾宗泳, 肖黎明, 等. 不同方法测量折射率结构常数的比较[J]. 光学学报, 2000, 20(6): 755-761. doi: 10.3321/j.issn:0253-2239.2000.06.007Yuan Renmin, Zeng Zongyong, Xiao Liming, et al. Comparison of some methods of measuring refractive index structure parameter. Acta Optica Sinica, 2000, 20(6): 755-761 doi: 10.3321/j.issn:0253-2239.2000.06.007 [2] 吴晓庆. 大气光学湍流、模式与测量技术[J]. 安徽师范大学学报, 2006, 29(2): 103-107. doi: 10.3969/j.issn.1001-2443.2006.02.001Wu Xiaoqing. Atmospheric optical turbulence, model and measurement techniques. Journal of Anhui Normal University, 2006, 29(2): 103-107 doi: 10.3969/j.issn.1001-2443.2006.02.001 [3] 许利明, 吴晓庆, 王英俭. 用常规气象参数估算光学湍流廓线方法的比较[J]. 强激光与粒子束, 2008, 20(1): 53-57. http://www.hplpb.com.cn/article/id/3478Xu Liming, Wu Xiaoqing, Wang Yingjian. Methods comparision of estimating optical turbulence profile using conventional meteorology parameters. High Power Laser and Particle Beams, 2008, 20(1): 53-57 http://www.hplpb.com.cn/article/id/3478 [4] Tatarski V I. Wave propagation in a turbulent medium[M]. McGraw, 1961. [5] Dewan E M, Good R E, Beland R R, et al. A model for Cn2 (optical turbulence) profiles using radiosonde data[R]. PL-TR-93-2043. [6] Coulman C E, Vernin J. Significance of anisotropy and outer scale of turbulence for optical and radio seeing[J]. Applied Optics, 1991, 30(1): 118-126. doi: 10.1364/AO.30.000118 [7] Thorpe S A. Turbulence and mixing in a Scottish loch[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1977, 286(1334): 125-181. [8] Luce H, Fukao S, Dalaudier F, et al. Strong mixing events observed near the tropopause with the MU radar and high-resolution balloon techniques[J]. Journal of the Atmospheric Sciences, 2002, 59(20): 2885-2896. doi: 10.1175/1520-0469(2002)059<2885:SMEONT>2.0.CO;2 [9] Gavrilov N M, Luce H. Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign[J]. Annales Geophysicae, 2005, 23(7): 2401-2413. doi: 10.5194/angeo-23-2401-2005 [10] Basu S. A simple approach for estimating the refractive index structure parameter (Cn2) profile in the atmosphere[J]. Optics Letters, 2015, 40(17): 4130-4133. doi: 10.1364/OL.40.004130 [11] Sorbjan Z, Balsley B B. Microstructure of turbulence in the stably stratified boundary layer[J]. Boundary-Layer Meteorology, 2008, 129(2): 191-210. doi: 10.1007/s10546-008-9310-1 [12] Mater B D, Schaad S M, Venayagamoorthy S K. Relevance of the Thorpe length scale in stably stratified turbulence[J]. Physics of Fluids, 2013, 25(7): 076604-1-076604-13. doi: 10.1063/1.4813809 [13] Dillon T M. Vertical overturns: A comparison of Thorpe and Ozmidov length scales[J]. Journal of Geophysical Research Oceans, 1982, 87(C12): 9601-9613. doi: 10.1029/JC087iC12p09601 [14] 史军强, 陈学恩. 基于舟山外海连续测站的湍混合研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(3): 25-32. doi: 10.16441/j.cnki.hdxb.20130370Shi Junqiang, Chen Xueen. Study on turbulent mixing based on the in-situ continuous observations station in the Zhoushan Sea. Periodical of Ocean University of China, 2015, 45(3): 25-32 doi: 10.16441/j.cnki.hdxb.20130370