留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种小型化高功率微波辐射场功率密度测试系统

张翠翠 王益 王建忠 何斌 于明媚

张翠翠, 王益, 王建忠, 等. 一种小型化高功率微波辐射场功率密度测试系统[J]. 强激光与粒子束, 2020, 32: 033002. doi: 10.11884/HPLPB201931.190351
引用本文: 张翠翠, 王益, 王建忠, 等. 一种小型化高功率微波辐射场功率密度测试系统[J]. 强激光与粒子束, 2020, 32: 033002. doi: 10.11884/HPLPB201931.190351
Zhang Cuicui, Wang Yi, Wang Jianzhong, et al. A miniaturized power density measurement system for high-power microwave radiation field[J]. High Power Laser and Particle Beams, 2020, 32: 033002. doi: 10.11884/HPLPB201931.190351
Citation: Zhang Cuicui, Wang Yi, Wang Jianzhong, et al. A miniaturized power density measurement system for high-power microwave radiation field[J]. High Power Laser and Particle Beams, 2020, 32: 033002. doi: 10.11884/HPLPB201931.190351

一种小型化高功率微波辐射场功率密度测试系统

doi: 10.11884/HPLPB201931.190351
基金项目: 装备技术基础课题
详细信息
    作者简介:

    张翠翠(1984—),女,硕士研究生,从事高功率微波器件测试及研制;cuicui_zhang@163.com

  • 中图分类号: TN98

A miniaturized power density measurement system for high-power microwave radiation field

  • 摘要: 为解决现有高功率微波辐射场功率密度测量系统测量环节多、系统复杂以及长电缆无法适应复杂电磁环境测量等问题,研制了一款小型化、一体化辐射场功率密度测量系统。系统采用天线-耦合器-转换器作为接收前端,后端采用同轴信号处理单元,在屏蔽箱内完成信号衰减、功率探测及电光转换,可实现系统远程测量与监控,可用于连续波、单次脉冲、连续脉冲辐射场功率密度测量。同时,系统采用模块化校准,可有效降低测量系统不确定度。该系统具备30 dB动态,最小可测脉宽50 ns,可测辐射场功率密度100 MW/m2,系统结构紧凑,简便易携,采用光纤传输,抗电磁辐射,可实现X波段GW级高功率微波辐射场功率密度快速测量。
  • 图  1  高功率微波辐射场功率密度测试系统框图

    Figure  1.  Structure diagram of high-power microwave radiation field measurement system

    图  2  天线实物图及测量结果

    Figure  2.  Antenna and it’s measurements

    图  3  耦合器实物及测量结果

    Figure  3.  Coupler and it’s measurements

    图  4  转接头实物及测量结果

    Figure  4.  Adapter and it’s measurement

    图  5  控制单元

    Figure  5.  Signal control unit

    图  6  远程控制软件

    Figure  6.  Software of remote monitoring

    图  7  前端接收单元校准及结果

    Figure  7.  Calibration of front receiver

    图  8  GW级高功率微波测试现场及测量曲线

    Figure  8.  System and measurements of GW high power microwave test

    表  1  系统功率预估

    Table  1.   Estimation of system power

    frequency/
    GHz
    power density/
    (MW/m2)
    gain of
    antenna/dB
    effective area of
    antenna /cm2
    output power of
    antenna/dBm
    coupling factor of
    coupler /dB
    output power of
    coupler/dBm
    8.210015.739.886.04046.0
    1010017.439.886.04046.0
    12.410019.440.586.14046.1
    下载: 导出CSV
  • [1] 闫军凯, 刘小龙, 叶虎, 等. X波段高功率微波馈源辐射总功率阵列法测量技术[J]. 强激光与粒子束, 2011, 23(11):3149-3153. (Yan Junkai, Liu Xiaolong, Ye Hu, et al. X-band HPM feed total radiation power measurement using array method[J]. High Power Laser and Particle Beams, 2011, 23(11): 3149-3153
    [2] 宋莉莉. 基于电光晶体测量高功率微波的技术研究[D]. 长沙: 国防科技大学, 2013.

    Song Lili. Electro-optic sensors high power microwave. Changsha: National University of Defense Technology, 2013
    [3] 李义民, 邢建泉, 王兰. 基于微波光子学的高功率微波测量[J]. 强激光与粒子束, 2016, 28:033028. (LiYimin, Xing Jianquan, Wang Lan. High power microwave measurement based on microwave photonics[J]. High Power Laser and Particle Beams, 2016, 28: 033028
    [4] 屈劲, 刘庆想, 胡进光, 等. 高功率微波辐射场功率密度测量系统[J]. 强激光与粒子束, 2004, 16(1):77-80. (Qu Jin, Liu Qingxiang, Hu Jinguang, et al. Measurement system on power density of high power microwave radiation[J]. High Power Laser and Particle Beams, 2004, 16(1): 77-80
    [5] 张治强, 王宏军, 张黎军, 等. 高功率微波辐射场功率阵列测量装置研制[J]. 强激光与粒子束, 2010, 22(4):883-886. (Zhang Zhiqiang, Wang Hongjun, Zhang Lijun, et al. Development of array device for power measurement of high power microwave radiation field[J]. High Power Laser and Particle Beams, 2010, 22(4): 883-886
    [6] 张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:053002. (Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 053002
    [7] 史鹏飞, 蒋廷勇, 刘小龙, 等. X波段高功率微波一体化辐射场测量系统: 103995187[P]. 2014-08-20.

    Shi Pengfei, Jiang Tingyong, Liu Xiaolong, et al. X-band high power microwave integrated radiation field measurement system: 103995187. 2014-08-20
    [8] Sun D, Xu J. Rectangular waveguide coupler with adjustable coupling coefficient using gap waveguide technology[J]. Electronics Letters, 2017, 53(3): 167-169. doi: 10.1049/el.2016.4039
    [9] Wu T, Wang Q, Jin Z, et al. Simulation and design of ridge waveguide coupler[C]//IEEE International Workshop on Microwave and Millimeter Wave Circuits and System Technology. 2012: 1-3.
    [10] Chen Z L, Tong L, Tian Y, et al. Directional coupler using multi-stage coupled structure theory[J]. Progress in Electromagnetics Research, 2013, 45: 113-123. doi: 10.2528/PIERC13050111
    [11] 刘海旭. 一种高功率超宽带波导耦合器的设计方法[J]. 电光系统, 2016(4):30-32. (Liu Haixu. Design method of high power ultra wideband waveguide coupler[J]. Electronic and Electro-optical Systems, 2016(4): 30-32
    [12] 马重阳. 基于S波段新型宽带高功率波导定向耦合器的设计与研究[D]. 北京: 北京交通大学, 2016.

    Ma Chongyang. Research and design of the novel broadband high power waveguide directional coupler based on S-band. Beijing: Beijing Jiaotong University, 2016
    [13] Karimabadi S S, Attari A R. X-band multi-hole directional coupler with folded substrate-integrated waveguide[J]. Electromagnetics, 2015, 35(6): 404-414. doi: 10.1080/02726343.2015.1053354
    [14] 孙玉洁, 段俊萍, 王雄师, 等. 多孔耦合型太赫兹波导定向耦合器的设计[J]. 红外与激光工程, 2017, 46(1):255-261. (Sun Yujie, Duan Junping, Wang Xiongshi, et al. Design of multi-hole terahertz waveguide directional couplers[J]. Infrared & Laser Engineering, 2017, 46(1): 255-261
    [15] 魏振华, 田立松, 冯旭东, 等. 8-18 GHz同轴-波导转换器的分析与设计[J]. 微波学报, 2008, 24(S1):125-128. (Wei Zhenhua, Tian Lisong, Feng Xudong, et al. Analysis and design on 8-18 GHz coaxial-waveguide transition[J]. Journal of Microwaves, 2008, 24(S1): 125-128
    [16] 汤一铭, 薄亚明. 6~20 GHz同轴-矩形波导转换器的设计[J]. 微波学报, 2012, 28(2):32-35. (Tang Yiming, Bo Yaming. Design of a coaxial to rect-waveguide transition with enhanced bandwidth of 6~20 GHz[J]. Journal of Microwaves, 2012, 28(2): 32-35
    [17] Sun G Q. Design of the broadband coaxial to waveguide adapter[J]. Science & Technology Information, 2010(19): 164-165.
    [18] Lin F M, Guan T H. Doorknob type little reflection transition of coaxial TEM mode to rectangular TE10 mode[J]. Vacuum Electronics, 2008(2): 22-25.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  570
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-12
  • 修回日期:  2019-11-05
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回