留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化套筒惯性聚变研究进展

赵海龙 肖波 王刚华 王强

赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32: 052001. doi: 10.11884/HPLPB202032.190357
引用本文: 赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变研究进展[J]. 强激光与粒子束, 2020, 32: 052001. doi: 10.11884/HPLPB202032.190357
Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001. doi: 10.11884/HPLPB202032.190357
Citation: Zhao Hailong, Xiao Bo, Wang Ganghua, et al. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32: 052001. doi: 10.11884/HPLPB202032.190357

磁化套筒惯性聚变研究进展

doi: 10.11884/HPLPB202032.190357
基金项目: 国家自然科学基金项目(11205145,11605189)
详细信息
    作者简介:

    赵海龙(1985—),男,助理研究员,从事脉冲功率技术及其应用研究;ifp.zhaohailong@qq.com

  • 中图分类号: O539

Research progress of Magnetized Liner Inertial Fusion

  • 摘要:

    磁化套筒惯性聚变(MagLIF)是一种新的聚变构型,它结合了传统惯性约束聚变和磁约束聚变的优点,理论上可以显著地降低聚变实现的难度,未来必将朝着点火的目标进一步发展,具备极大的应用潜力。针对这一特殊构型,分别从理论、实验和工程三个部分介绍了国际上该领域主要的研究进展,内容覆盖理论研究、数值模拟、实验加载、测量与诊断、负载设计与加工、分解实验、构型改进等多个方面,通过该文能够对该领域的研究现状有相对完善的了解,对未来发展趋势也有一定的认知。

  • 图  1  MagLIF过程示意图(包含三个主要阶段)

    Figure  1.  Schematic of MagLIF process,including three main stages

    图  2  MagLIF简单构型解析表达式中的模型示意图

    Figure  2.  Schematic of analytic MagLIF model

    图  3  圣地亚实验室关于螺旋不稳定性结构的模拟结果展示

    Figure  3.  Demonstration of helical instability structure simulated by HYDRA with PIC code

    图  4  近期设计负载参数数值模拟结果

    Figure  4.  Recent design results calculated by HYDRA

    图  5  首批MagLIF集成实验负载结构示意图与激光预加热曲线

    Figure  5.  Schematic of integrated MagLIF experiments’ load configuration and laser preheat curve

    图  6  Z装置上首批MagLIF集成实验测量结果

    Figure  6.  Experimental results of integrated MagLIF shots on Z facility

    图  7  激光驱动MagLIF构型示意图

    Figure  7.  Schematic of MagLIF driven by laser beams

    图  8  MagLIF制靶设计的类型通览(高度8~10 mm,外径2.1~5.0 mm)

    Figure  8.  Demonstration of main types of MagLIF load configurations

    图  9  AutoMag构型加载过程的三个主要阶段

    Figure  9.  Three main stages of AutoMag configuration

    图  10  理想情况下一维HYDRA计算结果(带冰层燃料MagLIF)

    Figure  10.  Calculated results by HYDRA (with cryogenic DT layer)

  • [1] Aymar R. The ITER project[J]. IEEE Trans Plasma Science, 1997, 6: 1187.
    [2] Shimomura Y, Spears W. Review of the ITER project[J]. IEEE Trans Plasma Science, 2004, 14: 1369.
    [3] Huang Chuanjun, Li Laifeng. Magnetic confinement fusion: A brief review[J]. Front Energy, 2018, 12: 305. doi: 10.1007/s11708-018-0539-1
    [4] Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 2019, 26: 052704. doi: 10.1063/1.5087256
    [5] McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Phys Plasmas, 2008, 15: 055503. doi: 10.1063/1.2837048
    [6] Mordecai D R, Meyerhofer1 D D, Betti R, et al. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial[J]. Phys Plasmas, 1999, 6: 1690. doi: 10.1063/1.873427
    [7] Freidberg J. 等离子体物理与聚变能[M]. 北京: 科学出版社, 2010: 50-51.

    Freidberg J. Plasma physics and fusion energy. Beijing: Science Press, 2010: 50-51
    [8] Thio Y C F, Panarella E, Knupp C E, et al. Magnetized target fusion in a spheroidal geometry with standoff drivers[C]//The 2nd Conference on Current Trends in International Fusion Research. 1999: 113.
    [9] Parks P B. On the efficacy of imploding plasma liners for magnetized fusion target compression[J]. Phys Plasmas, 2008, 15: 062506. doi: 10.1063/1.2948346
    [10] Cassibry J T, Stanic M, Hsu S C, et al. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry[J]. Phys Plasmas, 2012, 19: 052702. doi: 10.1063/1.4714606
    [11] Schoenberg K F, Siemon R E. Magnetized target fusion: A proof-of-principle research proposal[R].LA-UR-98-2413
    [12] Kirkpatrick R C. Magnetized target fusion(MTF) principle status and international collaboration[C]//Latin America Workshop on Plasma Physics. 1998.
    [13] Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 1983, 23: 263. doi: 10.1088/0029-5515/23/3/001
    [14] Perkins L J, M Ho D D, Logan B G, et al. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion[J]. Phys Plasmas, 2017, 24: 062708. doi: 10.1063/1.4985150
    [15] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [16] Harvey-Thompson A, Geissel M, Jennings C, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
    [17] Paradela J, Garcia-Rubio F, Sanz J. Alpha heating enhancement in MagLIF targets: A simple analytic model[J]. Phys Plasmas, 2019, 26: 012705. doi: 10.1063/1.5079519
    [18] Perkins L J, Logan B G, Zimmerman G B, et al. Two-dimensional simulation of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields[J]. Phys Plasmas, 2013, 20: 072708. doi: 10.1063/1.4816813
    [19] Slutz S A, Roger A V. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [20] Sefkow A B, Slutz S A, Koning J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility[J]. Phys Plasmas, 2014, 21: 072711. doi: 10.1063/1.4890298
    [21] Slutz S A. Magnetized liner inertial fusion(MagLIF): The promise and challenges[C]//MagLIF Workshop. 2012.
    [22] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [23] Knapp P F, Gomez M R , Hansen S B ,et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
    [24] Pecover J D, Chittenden J P. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects[J]. Phys Plasmas, 2015, 22: 102701. doi: 10.1063/1.4932328
    [25] Appelbe B, Pecover J, Chittenden J, et al. The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion[J]. High Energy Density Physics, 2017, 22: 27. doi: 10.1016/j.hedp.2017.01.005
    [26] Knapp C E, Kirkpatrick R C. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept[J]. Phys Plasmas, 2014, 21: 070701. doi: 10.1063/1.4885075
    [27] Marinak M M, Kerbel G D, Gentile N A, et al. Three-dimensional HYDRA simulations of National Ignition Facility targets[J]. Phys Plasmas, 2001, 8: 2275. doi: 10.1063/1.1356740
    [28] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) targets simulations[J]. Comput Phys Commun, 2016, 203: 226. doi: 10.1016/j.cpc.2016.02.014
    [29] Ramis R. 3D simulations of thin shell capsule implosions[C]//The 2nd International Conference on Matter and Radiation at Extremes. 2017.
    [30] Wu Fuyuan. Running MULTI-IFE standalone in Windows/Linux operating system[C]//Local Symposium. 2017.
    [31] Chen Shijia. Numerical simulation of MagLIF by MULTI-IFE[C]//Local Symposium. 2017.
    [32] McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [33] McBride R. D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
    [34] Ryutov D D, Cuneo M E, Herrman M C, et al. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments[J]. Phys Plasmas, 2012, 19: 062706. doi: 10.1063/1.4729726
    [35] Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Phys Plasmas, 2015, 22: 042702. doi: 10.1063/1.4916777
    [36] Lindemuth I R. The ignition design space of magnetized target fusion[J]. Phys Plasmas, 2015, 22: 122712. doi: 10.1063/1.4937371
    [37] Garcia-Rubio F, Sanz J. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface[J]. Phys Plasmas, 2017, 24: 072710. doi: 10.1063/1.4991391
    [38] Garcia-Rubio F, Sanz J. Mass diffusion and liner material effect in a MagLIF fusion-like plasma[J]. Phys Plasmas, 2018, 25: 082112. doi: 10.1063/1.5044642
    [39] Garcia-Rubio F, Sanz J, Betti R. Magnetic flux conservation in an imploding plasma[J]. Phys Rev E, 2018, 97: 011201. doi: 10.1103/PhysRevE.97.011201
    [40] Sinars D B, Slutz S A, Herrmann M C, et al. Measurement of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility[J]. Phys Rev Lett, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
    [41] Peterson K J, Yu E P, Sinars D B, et al. Herrmann simulations of electro-thermal instability growth in solid aluminum rods[J]. Phys Plasmas, 2013, 20: 056305. doi: 10.1063/1.4802836
    [42] Peterson K J, Awe T J, Yu E P, et al. Electro-thermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Phys Rev Lett, 2014, 112: 135002. doi: 10.1103/PhysRevLett.112.135002
    [43] Awe T J, McBride R D, Jennings C A, et al. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Phys Rev Lett, 2013, 111: 235005. doi: 10.1103/PhysRevLett.111.235005
    [44] Sefkow A B. On the helical instability and efficient stagnation pressure production in thermonuclear magnetized inertial fusion[C]//58th Annual Meeting of the Division of Plasma Physics of the American Physical Society. 2016.
    [45] Seyler C E, Martin M R, Hamlin N D. Helical instability in MagLIF due to axial flux compression by low-density plasma[J]. Phys Plasmas, 2018, 25: 062711. doi: 10.1063/1.5028365
    [46] Peterson K J. Dramatic reduction of magneto-Rayleigh Taylor instability growth in magnetically driven Z-pinch liners [C]//20th International Conference on Plasma Science. 2015.
    [47] Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nucl Fusion, 2000, 40: 59. doi: 10.1088/0029-5515/40/1/305
    [48] Gomez M R, Slutz S A, Sefkow A B, et al. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments[J]. Phys Plasmas, 2015, 22: 056306. doi: 10.1063/1.4919394
    [49] Barnak D H. Laser-driven magnetized liner inertial fusion on OMEGA[J]. Phys Plasmas, 2017, 24: 056310. doi: 10.1063/1.4982692
    [50] Davies J R, Davies J R, Betti R, et al. Laser-driven magnetized liner inertial fusion[J]. Phys Plasmas, 2017, 24: 062701. doi: 10.1063/1.4984779
    [51] Sinars D B. Magnetized Liner Inertial Fusion (MagLIF) research at Sandia National Laboratories [C]//1st Chinese Pulsed Power Society Workshop. 2015.
    [52] Geissel M. LEH transmission and early fuel heating for MagLIF with Z-beamlet [C]//45th Anomalous Absorption Conference. 2015.
    [53] Gomez M. Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments[C]//20th IEEE Pulsed Power Conference. 2015.
    [54] Geissel M, Awe T J, Bliss D E, et al. Nonlinear laser-plasma interaction in magnetized liner inertial fusion[C]/Proc of SPIE. 2016: 97310O.
    [55] Geissel M, Harvey-Thompson A J, Awe T J, et al. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets[J]. Phys Plasmas, 2018, 25: 022706. doi: 10.1063/1.5003038
    [56] Davies J R, Bahr R E, Barnak D H, et al. Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion[J]. Phys Plasmas, 2018, 25: 062704. doi: 10.1063/1.5030107
    [57] Slutz S A. On the feasibility of charged particle-beam preheat for MagLIF[R]. SAND 2015-1515R.
    [58] Hansen S. Investigating inertial confinement fusion target fuel conditions through X-ray spectroscopy[J]. Phys Plasmas, 2012, 19: 056312. doi: 10.1063/1.3694246
    [59] Hansen S. Transport in and diagnostics of Magnetized Liner Inertial Fusion(MagLIF) experiments[C]//Radiation High Energy Density Physics Workshop. 2015.
    [60] Rochau G A. MagLIF and the potential of high-speed single line-of-sight detection for ICF[R]. SAND 2015-4415PE.
    [61] Hansen S B, Sefkow A B, Nagayama T N, et al. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 122708. doi: 10.1063/1.4938047
    [62] Patrick K. Magnetized Liner Inertial Fusion (MagLIF) experiments on Z: Spectroscopy and what’s been learned about stagnation [R]. SAND 2015-5078PE.
    [63] Schmit P F, Knapp P F, Hansen S B, et al. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion[J]. Phys Rev Lett, 2014, 113: 155004. doi: 10.1103/PhysRevLett.113.155004
    [64] Knapp P F, Schmit P F, Hansen S B, et al. Effects of magnetization on fusion product trapping and secondary neutron spectra[J]. Phys Plasmas, 2015, 22: 056312. doi: 10.1063/1.4920948
    [65] Fooks J A, Carlson L C, Fitzsimmons P, et al. Evolution of Magnetized Liner Inertial Fusion(MagLIF) targets[J]. Fusion Sci Technol, 2018, 73: 1. doi: 10.1080/15361055.2017.1387009
    [66] Awe T J, Shelton K P, Sefkow A B, et al. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion(MagLIF) program[J]. Rev Sci Instrum, 2017, 88: 093515. doi: 10.1063/1.4986041
    [67] Lamppa D C. The path to 30 tesla: field coil designs for the Magnetized Liner Inertial Fusion (MagLIF) concept at Sandia’s Z facility[C]. SAND 2015-4163C.
    [68] Gourdain P A, Adams M B, Davies J R, et al. Axial magnetic field injection in magnetized liner inertial fusion[J]. Phys Plasmas, 2017, 24: 102712. doi: 10.1063/1.4986640
    [69] Shipley G A, Awe T J, Hutsel B T, et al. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns[J]. Phys Plasmas, 2018, 25: 052703. doi: 10.1063/1.5028142
    [70] Slutz S A, Stygar W A, Gomez M R, et al. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators[J]. Phys Plasmas, 2016, 23: 022702. doi: 10.1063/1.4941100
    [71] Slutz S A. Scaling of magnetized inertial fusion with drive current rise-time[J]. Phys Plasmas, 2018, 25: 082707. doi: 10.1063/1.5040116
  • 加载中
图(10)
计量
  • 文章访问数:  1653
  • HTML全文浏览量:  495
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-01-10
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回