留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型半矩形环螺旋线慢波结构高频特性

夏伟 魏望和 魏彦玉 卢敏

夏伟, 魏望和, 魏彦玉, 等. 新型半矩形环螺旋线慢波结构高频特性[J]. 强激光与粒子束, 2020, 32: 043002. doi: 10.11884/HPLPB202032.190359
引用本文: 夏伟, 魏望和, 魏彦玉, 等. 新型半矩形环螺旋线慢波结构高频特性[J]. 强激光与粒子束, 2020, 32: 043002. doi: 10.11884/HPLPB202032.190359
Xia Wei, Wei Wanghe, Wei Yanyu, et al. High-frequency characteristics of half rectangular ring helix slow wave structure[J]. High Power Laser and Particle Beams, 2020, 32: 043002. doi: 10.11884/HPLPB202032.190359
Citation: Xia Wei, Wei Wanghe, Wei Yanyu, et al. High-frequency characteristics of half rectangular ring helix slow wave structure[J]. High Power Laser and Particle Beams, 2020, 32: 043002. doi: 10.11884/HPLPB202032.190359

新型半矩形环螺旋线慢波结构高频特性

doi: 10.11884/HPLPB202032.190359
基金项目: 国家自然科学基金项目(61761022);江西省教育厅科技项目(GJJ160622)
详细信息
    作者简介:

    夏 伟(1993—),男,硕士,从事新型慢波结构的研究;1443490955@qq.com

    通讯作者:

    魏望和(1978—),男,博士,副教授,专业为物理电子学,研究方向为行波管;weiwanghe@126.com

  • 中图分类号: TN124

High-frequency characteristics of half rectangular ring helix slow wave structure

  • 摘要: 针对行波管更高工作频率和更大输出功率的发展需要,提出了一种半矩形环螺旋线慢波结构。基于三维电磁仿真软件HFSS的模拟研究表明:调控慢波结构的尺寸可以获得合适的色散特性和互作用阻抗,与现有技术的半圆环螺旋线慢波结构相比较,半矩形环螺旋线慢波结构的色散变化很小,但是具有更高的互作用阻抗值。新结构具有平坦色散、高互作用阻抗、与微细加工技术相兼容以及方便与带状电子束互作用的综合优点。
  • 图  1  半圆环螺旋线慢波结构和半矩形环螺旋线慢波结构模型图

    Figure  1.  Model of half circular ring helix slow wave structure and half rectangular ring helix slow-wave structure

    图  2  半矩形环螺旋线厚度t对慢波结构高频特性的影响,参数(单位:mm):b/a=2, a=0.10, w=0.06, p=0.20, c=1.00, d=1.00

    Figure  2.  Effect of helix thickness on high-frequency characteristics with parameters of (in mm) b/a=2, a=0.10, w=0.06, p=0.20, c=1.00, d=1.00

    图  3  半矩形环螺旋线宽度w对慢波结构高频特性的影响,参数(单位:mm): b/a=2, a=0.10, t=0.01, p=0.20, c=1.00, d=1.00

    Figure  3.  Effect of helix width w on high-frequency characteristics with parameters of (in mm) b/a=2, a=0.10, t=0.01, p=0.20, c=1.00, d=1.00

    图  4  半矩形环螺旋线高度b对慢波结构高频特性的影响,参数(单位:mm)a=0.10, t=0.03, w=0.06, p=0.20, c=1.00, d=1.00

    Figure  4.  Effect of the height b on high-frequency characteristics with parameters of (in mm) a=0.10, t=0.03, w=0.06, p=0.20, c=1.00, d=1.00

    图  5  慢波结构周期对系统高频特性的影响参数,(单位:mm):a=0.10, b/a=2, t=0.01, w=0.06, c=1.00, d=1.00

    Figure  5.  Effect of the axial period on high-frequency characteristics with parameters of (in mm) a=0.10, b/a=2, t=0.01, w=0.06, c=1.00, d=1.00

    图  6  半矩形环螺旋线宽高比对系统高频特性的影响,参数(单位:mm)4a+4b=1.22, t=0.03, w=0.06, p=0.20, c=1.00, d=1.00

    Figure  6.  Effect of aspect ratio on high-frequency characteristics with parameters of (in mm) 4a+4b=1.22, t=0.03, w=0.06, p=0.20, c=1.00, d=1.00

    图  7  半矩形环螺旋线和相同结构参数的半圆环螺旋线高频特性对比

    Figure  7.  Comparison of high frequency characteristics between the half circular ring helix slow wave structure and the half rectangular ring helix slow wave structure

    图  8  半矩形环螺旋线慢波结构的S参数

    Figure  8.  S parameters of half rectangular ring helix slow-wave structure

  • [1] Booske J H, Dobbs R J, Joye C D. Vacuum electronic high power terahertz sources[J]. IEEE Trans THz Sci Technol, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2] 李含雁, 冯进军. UV LIGA技术在毫米波太赫兹器件中的应用进展[J]. 太赫兹科学与电子信息学报, 2018, 16(5):776-780. (Li Hanyan, Feng Jinjun. Progress in application and research of UV LIGA techniques in millimeter wave and terahertz devices[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(5): 776-780 doi: 10.11805/TKYDA201805.0776
    [3] 丁冲, 李倩, 雷霞, 等. 适用于 Ka 波段圆形电子束行波管的半圆形卷绕微带线慢波结构[J]. 红外与毫米波学报, 2018, 37(3):269-274. (Ding Chong, Li Qian, Lei Xia, et al. Semi-circularly folded microstrip meander line slow-wave structure for Ka-band traveling-wave tube with cylindrical electron beam[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 269-274 doi: 10.11972/j.issn.1001-9014.2018.03.003
    [4] Wei Wanghe, Wei Yanyu, Wang Wenxiang, et al. Dispersion equations of a rectangular tape helix slow-wave structure[J]. IEEE Trans Microw Theory Techn, 2015, 63(5): 1445-1456. doi: 10.1109/TMTT.2015.2411600
    [5] Shen Fei, Wei Yanyu, Xu Xiong, et al. Symmetric double V-shaped microstrip meander-line slow-wave structure for W-band traveling-wave tube[J]. IEEE Trans Electron Devices, 2012, 59(5): 1551-1557. doi: 10.1109/TED.2012.2188635
    [6] 付成芳, 魏彦玉, 宫玉彬, 等. 矩形螺旋线慢波电路高频特性的数值分析[J]. 真空科学与技术学报, 2009, 29(4):386-390. (Fu Chengfang, Wei Yanyu, Gong Yubin, et al. Numerical analysis of high-frequency characteristics of rectangular helical slow-wave circuits[J]. Chinese Journal of Vacuum Science and Technology, 2009, 29(4): 386-390 doi: 10.3969/j.issn.1672-7126.2009.04.10
    [7] Wei Wanghe, Wei Yanyu, Wang Yuanyuan, et al. A Study of the effects of helix misalignment on the cold parameters of a sheath helix slow-wave structure[J]. IEEE Trans Electron Devices, 2015, 62(4): 1334-1341. doi: 10.1109/TED.2015.2404824
    [8] 王海龙, 石先宝, 王站亮, 等. W 波段阶梯型交错双栅慢波结构行波管的研究[J]. 红外与毫米波学报, 2018, 37(6):784-789. (Wang Hailong, Shi Xianbao, Wang Zhanliang, et al. Research on W band step-type staggered double vane slow wave structure traveling wave tube[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 784-789
    [9] 陆德坚, 王自成, 刘璞鲲. 新型反绕双螺旋线慢波系统的分析与设计[J]. 强激光与粒子束, 2007, 19(4):651-656. (Lu Dejian, Wang Zicheng, Liu Pukun. Analysis and design of novel contrawound helix slow wave system[J]. High Power Laser and Particle Beams, 2007, 19(4): 651-656
    [10] Zuboraj M, Apaydin N, Sertel K, et al. Half-ring helical structure for traveling wave tube amplifiers[J]. IEEE Trans Plasma Sci, 2014, 42(11): 3465-3470. doi: 10.1109/TPS.2014.2361116
    [11] 韩勇, 刘燕文, 丁耀根, 等. 螺旋线镀膜对慢波组件散热性能影响的研究[J]. 电子与信息学报, 2008, 30(8):2029-2032. (Han Yong, Liuyanwen, Ding Yaogen, et al. Effect of plated helix on heat dissipation capability of the slow-wave circuit[J]. Journal of Electronics & Information Technology, 2008, 30(8): 2029-2032
    [12] Ryskin N M, Rozhnev A G, Starodubov, A V, et al. Planar microstrip slow-wave structure for low-voltage V-band traveling-wave tube with a sheet electron beam[J]. IEEE Electron Device Lett, 2018, 39(5): 757-760. doi: 10.1109/LED.2018.2821770
  • 加载中
图(8)
计量
  • 文章访问数:  1270
  • HTML全文浏览量:  380
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-12-27
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回