留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有高隔离度的双陷波超宽带多入多出天线

王丽黎 杜忠红 杨海龙 韩雪妮 席晓莉

王丽黎, 杜忠红, 杨海龙, 等. 具有高隔离度的双陷波超宽带多入多出天线[J]. 强激光与粒子束, 2020, 32: 063007. doi: 10.11884/HPLPB202032.190443
引用本文: 王丽黎, 杜忠红, 杨海龙, 等. 具有高隔离度的双陷波超宽带多入多出天线[J]. 强激光与粒子束, 2020, 32: 063007. doi: 10.11884/HPLPB202032.190443
Wang Lili, Du Zhonghong, Yang Hailong, et al. Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation[J]. High Power Laser and Particle Beams, 2020, 32: 063007. doi: 10.11884/HPLPB202032.190443
Citation: Wang Lili, Du Zhonghong, Yang Hailong, et al. Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation[J]. High Power Laser and Particle Beams, 2020, 32: 063007. doi: 10.11884/HPLPB202032.190443

具有高隔离度的双陷波超宽带多入多出天线

doi: 10.11884/HPLPB202032.190443
基金项目: 国防预研基金项目(6140450010302);西安市科技计划项目(2017080GG/RC043(XALG014)
详细信息
    作者简介:

    王丽黎(1968—),女,副教授,硕士生导师,从事天线与电波传播、先进导航技术研究;wanglili@xaut.edu.cn

  • 中图分类号: TN822+.8

Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation

  • 摘要: 提出了一款具有高隔离度的双陷波超宽带多入多出(UWB MIMO)天线。该天线由两个相同的半切超宽带天线单元倒置构成。通过在天线底板刻蚀栅栏型缺陷地解耦结构,使该MIMO天线的隔离度提高至25 dB。此外,在天线半圆形辐射贴片上刻蚀两个方向相反的“L”型缝隙,实现了双陷波的功能,分别抑制了802.16无线城域网WiMAX(3.2~3.7 GHz)和WLAN(5.15~5.85 GHz)信号对天线系统的干扰。实验结果表明,该天线在3~11 GHz工作带宽内的隔离度大于25 dB,包络相关系数(ECC)小于0.004;第一个陷波频段为3.0~3.7 GHz,第二个陷波频段为5.1~5.85 GHz,有效抑制了WiMAX和WLAN的信号干扰。
  • 图  1  UWB MIMO天线的几何形状

    Figure  1.  Geometry of the proposed UWB MIMO antenna

    图  2  原始天线和半切天线的几何结构以及S11

    Figure  2.  Schematics and S11 parameter of original antenna and half-cutting antenna

    图  3  有无解耦结构的隔离度对比

    Figure  3.  Comparison of isolation with or without decoupling structure

    图  4  不同缝隙数量对天线隔离度的影响

    Figure  4.  Influence of different numbers of slits on antenna isolation

    图  5  7.5 GHz时天线有无解耦结构的电流分布

    Figure  5.  Current distribution of antenna with or without decoupling structure at 7.5 GHz

    图  6  双陷波UWB MIMO天线的S11

    Figure  6.  S11 of the proposed two band-notched UWB MIMO antenna

    图  7  双陷波超宽带MIMO天线的的表面电流分布

    Figure  7.  Surface current distribution of double-notch UWB MIMO antenna

    图  8  天线仿真和测试的S参数

    Figure  8.  Measured and simulated S-parameters of the antenna

    图  9  超宽带MIMO天线的方向图

    Figure  9.  Radiation patterns of the proposed UWB MIMO antenna

    图  10  天线的增益和效率

    Figure  10.  Gain and efficiency of the proposed antenna

    图  11  MIMO天线的相关系数

    Figure  11.  ECC of the proposed MIMO antenna

    表  1  天线的几何尺寸

    Table  1.   Antenna geometry

    L1/mmL2/mmL3/mmL4/mmL5/mmL6/mmW1/mmW2/mmW3/mmW4/mmR1/mmR2/mm
    6.5 5.0 5.1 0.1 12.5 17.25 6.0 3.3 1.5 0.2 9.5 15
    下载: 导出CSV

    表  2  本文提出的超宽带MIMO天线与之前报道天线的性能比较

    Table  2.   Performance comparison between the proposed UWB-MIMO antenna and other recently reported antennas

    paperantenna sizebandwidth/GHznotched-bands/GHzisolation/dBECC
    Ref. [7]32.4 mm×58.4 mm2.44~10.753.01~4.00, 5.20~5.86>22<0.015
    Ref. [8]73 mm×73 mm3.00~18.003.30~3.80, 5.10~5.80>20<0.001 5
    Ref. [10]33 mm×35 mm3.10~5.00>22
    Ref. [12]28 mm×50 mm2.80~11.503.30~3.90>18<0.000 3
    Ref. [15]58 mm×58 mm3.00~13.503.20~3.80, 5.20~5.80>22<0.008
    Ref. [16]48 mm×80 mm3.10~10.60>25
    this paper35 mm×50 mm3.00~11.003.10~3.70, 5.15~5.85>25<0.004
    下载: 导出CSV
  • [1] Kaiser F Z T. Ultra-wideband systems with MIMO[M]. Hoboken: Wiley, 2010.
    [2] Oppermann I, Hamalainen M, Iinatti J. UWB theory and applications[M]. New York: Wiley, 2004: 3-4.
    [3] Wei Kunpeng, Zhang Zhijun, Chen Wenhua, et al. A novel hybrid-fed patch antenna with pattern diversity[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 562-565. doi: 10.1109/LAWP.2010.2051402
    [4] Kaiser T, Feng Zheng, Dimitrov E. An overview of ultra-wideband systems with MIMO[J]. Proceedings of the IEEE, 2009, 97(2): 285-312. doi: 10.1109/JPROC.2008.2008784
    [5] Balanis C A. Antenna theory: Analysis and design[M]. 2nd. New York: John Wiley & Sons, 1996.
    [6] 娄树勇, 高海涛, 许会芳. 共面波导馈电的三陷波超宽带天线的设计[J]. 压电与声光, 2019, 41(1):167-170. (Lou Shuyong, Gao Haitao, Xu Huifang. Design of a CPW fed UWB antenna with triple-band notch[J]. Piezoelectric & Acoustooptics, 2019, 41(1): 167-170
    [7] 杜成珠, 马天驰, 焦哲晶. 一种高隔离度的双阻带超宽带MIMO天线设计[J]. 电子元件与材料, 2019(9):71-76. (Du Chengzhu, Ma Tianchi, Jiao Zhejing. Design of a high isolation dual band-notched UWB-MIMO antenna[J]. Electronic Components and Materials, 2019(9): 71-76
    [8] Eltrass A S, Elborae A N. New design of UWB-MIMO antenna with enhanced isolation and dual-band rejection for WiMAX and WLAN systems[J]. IET Microwaves, Antennas & Propagation, 2019, 13(5): 683-691.
    [9] Tiwari R N, Singh P, Kanaujia B K. A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(11): 1-9.
    [10] Zhang Shui, Pedersen G F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 166-169. doi: 10.1109/LAWP.2015.2435992
    [11] Devana V N K R, Rao A M. Compact UWB monopole antenna with quadruple band notched characteristics[J]. International Journal of Electronics, 2019(3).
    [12] Ibrahim, A A, Machac J, Shubair R M. Compact UWB MIMO antenna with pattern diversity and band rejection characteristics[J]. Microwave and Optical Technology Letters, 2017, 59(6): 1460-1464. doi: 10.1002/mop.30564
    [13] Banerjee J, Karmakar A, Ghatak R, et al. Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(15): 1550-1565. doi: 10.1080/09205071.2017.1354727
    [14] Chu Qingxin, Wu Yuting. Dual-band multiple input multiple output antenna with slitted ground[J]. IET Microwaves, Antennas & Propagation, 2014, 8(13): 1007-1013.
    [15] Raheja D K, Kanaujia B K, Kumar S. Compact four-port MIMO antenna on slotted-edge substrate with dual-band rejection characteristics[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019: e21756.
    [16] Gogosh N, Shafique M F, Saleem R, et al. An UWB diversity antenna array with a novel H-type decoupling structure[J]. Microwave and Optical Technology Letters, 2013, 55(11): 2715-2720. doi: 10.1002/mop.27941
    [17] Sun Mei, Zhang Yueping, Lu Yilong. Miniaturization of planar monopole antenna for ultrawideband radios[J]. IEEE Trans Antennas and Propagation, 2010, 58(7): 2420-2425. doi: 10.1109/TAP.2010.2048851
    [18] Wu Ling, Xia Yingqing, Cao Xia, et al. A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics[J]. International Journal of Microwave and Wireless Technologies, 2018, 10(8): 948-955. doi: 10.1017/S1759078718000508
    [19] Mobashsher A T, Abbosh A. Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 153-166. doi: 10.1109/MAP.2015.2414488
    [20] Liu Jianjun, Esselle K. Hay P S G, et al. Effects of printed UWB antenna miniaturization on pulse fidelity and pattern stability[J]. IEEE Trans Antennas and Propagation, 2014, 62(8): 3903-3910. doi: 10.1109/TAP.2014.2322885
    [21] Khan M S, Capobianco A, Najam A I, et al. Compact ultra-wideband diversity antenna with a floating parasitic digitated decoupling structure[J]. IET Microwaves, Antennas & Propagation, 2014, 8(10): 747-753.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1752
  • HTML全文浏览量:  411
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-03-16
  • 刊出日期:  2020-05-12

目录

    /

    返回文章
    返回