留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢原子束在大气长程传输中的剥离效应

沈硕 张芳 郝建红 董志伟 赵强 范杰清

沈硕, 张芳, 郝建红, 等. 氢原子束在大气长程传输中的剥离效应[J]. 强激光与粒子束, 2020, 32: 104002. doi: 10.11884/HPLPB202032.200053
引用本文: 沈硕, 张芳, 郝建红, 等. 氢原子束在大气长程传输中的剥离效应[J]. 强激光与粒子束, 2020, 32: 104002. doi: 10.11884/HPLPB202032.200053
Shen Shuo, Zhang Fang, Hao Jianhong, et al. Stripping effect of hydrogen atom beam in long-range atmospheric propagation[J]. High Power Laser and Particle Beams, 2020, 32: 104002. doi: 10.11884/HPLPB202032.200053
Citation: Shen Shuo, Zhang Fang, Hao Jianhong, et al. Stripping effect of hydrogen atom beam in long-range atmospheric propagation[J]. High Power Laser and Particle Beams, 2020, 32: 104002. doi: 10.11884/HPLPB202032.200053

氢原子束在大气长程传输中的剥离效应

doi: 10.11884/HPLPB202032.200053
基金项目: 国家自然科学基金项目(U1730247,11571047,61372050)
详细信息
    作者简介:

    沈 硕(1997—),男,硕士,从事中性粒子束长程传输研究;shuoshen@outlook.com

    通讯作者:

    张 芳(1984—),女,博士,副研究员,从事粒子束长程传输研究;zhang_fang@iapcm.ac.cn

  • 中图分类号: O46

Stripping effect of hydrogen atom beam in long-range atmospheric propagation

  • 摘要: 考虑到中性粒子束对近地轨道太空垃圾的清理作用以及在太空探索中的潜在应用前景,研究了中性粒子束在亚轨道空间长程传输过程中影响束流能量和密度损失的主要物理机制,重点分析了剥离效应对束流损耗的影响。中性束剥离效应包括束流粒子之间碰撞导致的自剥离效应和其与大气粒子碰撞导致的剥离效应。以束密度随传播距离变化的方程为基础,通过引用几何因子来表征束流的自剥离效应强度,建立了剥离效应机制下束流的传输模型,由此评估了束流自剥离效应在中性束长程传输中对传输距离的影响关系。研究结果表明,在固定的高度,当中性束密度大于空气粒子密度时,自剥离效应的影响将非常突出,随着传输高度的升高,即使束密度和空气密度同时降低维持量级一致,自剥离效应对传输距离的影响在大几何因子的情况下仍会增强。
  • 图  1  在幸存比η=0.3时不同初始束流密度N的情况下,分别在距地200、400、600、800 km处传输距离损失率P随几何因子γ变化

    Figure  1.  Under the condition of survival ratio η=0.3 and different initial beam density,the transmission distance loss rate P varies with geometric factor γ at height of 200,400,600 and 800 km from the ground

    图  2  不同初始束流密度时中性束传输距离与幸存比η的关系

    Figure  2.  The relationship between the propagation distance of neutral beam and the survival ratio η at different initial beam densities

    图  3  不同几何因子时束流传输距离与幸存比η的关系

    Figure  3.  The relationship between the beam propagation distance and the survival ratio η under different geometric factors

    图  4  不同高度时中性束传输距离与幸存比η的关系

    Figure  4.  The relationship between the propagation distance of neutral beam and the survival ratio η at different altitude

    表  1  大气粒子主要成分电离截面参数

    Table  1.   Ionization cross section parameters of main components of atmospheric particles

    σi/cm2
    i=1i=2i=3i=4i=5
    N2O2HeArcharged particle
    0.628×10−161.084×10−160.137×10−160.650×10−162.000×10−16
    下载: 导出CSV

    表  2  描述自剥离效应的主要参数

    Table  2.   Main parameters to describe self-stripping effect

    jXγjσj/cm2nj/cm−3
    1eγ0.9×10−18N-b
    2Hγ0.135×10−16N-b
    下载: 导出CSV
  • [1] Li Bin, Sang Jizhang. Efficient and accurate error propagation in the semi-analytic orbit dynamics system for space debris[J]. Advances in Space Research, 2020, 65(1): 285-296. doi: 10.1016/j.asr.2019.09.016
    [2] Carmen P, Luciano A. Environmental sustainability of large satellite constellations in low earth orbit[J]. Acta Astronautica, 2020, 170: 27-36. doi: 10.1016/j.actaastro.2020.01.016
    [3] Cordelli E, Vananti A, Schildknecht T. Analysis of laser ranges and angular measurements data fusion for space debris orbit determination[J]. Advances in Space Research, 2020, 65(1): 419-434. doi: 10.1016/j.asr.2019.11.009
    [4] Hossein S H, Acernese M, Cardona T, et al. Sapienza Space debris Observatory Network (SSON): A high coverage infrastructure for space debris monitoring[J]. The Journal of Space Safety Engineering, 2020, 7(1): 30-37. doi: 10.1016/j.jsse.2019.11.001
    [5] Lacruz E, Casanova D, Abad A. Estimation of a reliability range for the area-to-mass ratio of orbiters at the geostationary ring[J]. Acta Astronautica, 2020, 166: 104-112. doi: 10.1016/j.actaastro.2019.09.039
    [6] Riel T, Sinn A, Schwaer C, et al. Iterative trajectory learning for highly accurate optical satellite tracking systems[J]. Acta Astronautica, 2019, 164: 121-129. doi: 10.1016/j.actaastro.2019.07.012
    [7] Zhao Sisi, Michael S, Georg K, et al. Attitude analysis of space debris using SLR and light curve data measured with single-photon detector[J]. Advances in Space Research, 2020, 65(5): 1518-1527. doi: 10.1016/j.asr.2019.12.005
    [8] Carini P, Kalman G, Pulsifer P. Neutral beam propagation effects in the upper atmosphere[R]. AFGL-TR-85-0038, 1985: 11-24.
    [9] Lai ST. Ionization of a high energy neutral beam propagating in the ionosphere[C]//1992 9th International Conference on High-Power Particle Beams. 1992: 1907-1911.
    [10] Neumann H, Le T Q, Zyl B V. H+Ar collisions. II. Differential scattering calculations[J]. Phys Rev A, 1978, 15(5): 1887-1892.
    [11] Zyl B V, Neumann H, Le T Q, et al. H+N2 and H+O2 collisions: Experimental charge-production cross sections and differential scattering calculations[J]. Phys Rev A, 1978, 18(2): 506-516. doi: 10.1103/PhysRevA.18.506
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  191
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-07-03
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回