留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大能量全固态再生放大器研究进展

伍圆军 高妍琦 华怡林 谢庆南 郑权 马伟新 隋展

伍圆军, 高妍琦, 华怡林, 等. 大能量全固态再生放大器研究进展[J]. 强激光与粒子束, 2020, 32: 112006. doi: 10.11884/HPLPB202032.200089
引用本文: 伍圆军, 高妍琦, 华怡林, 等. 大能量全固态再生放大器研究进展[J]. 强激光与粒子束, 2020, 32: 112006. doi: 10.11884/HPLPB202032.200089
Wu Yuanjun, Gao Yanqi, Hua Yilin, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 112006. doi: 10.11884/HPLPB202032.200089
Citation: Wu Yuanjun, Gao Yanqi, Hua Yilin, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 112006. doi: 10.11884/HPLPB202032.200089

大能量全固态再生放大器研究进展

doi: 10.11884/HPLPB202032.200089
基金项目: 科学挑战计划项目(TZ2016005);国家自然科学基金项目(11604317,11604318,11804321)
详细信息
    作者简介:

    伍圆军(1996—),男,硕士研究生,从事高功率激光技术研究;1509136122@qq.com

    通讯作者:

    高妍琦(1983—),男,博士,副研究员,硕士生导师,主要从事高功率激光技术研究;liufenggyq@siom.ac.cn

  • 中图分类号: TN248.1

Progress in high energy all-solid-state regenerative amplifier

  • 摘要: 在固体激光脉冲放大器中,再生放大器具有增益高、光束质量好以及结构简单等优点,得到了广泛的关注和应用。经过几十年的不断发展,再生放大器已经能够实现数百mJ脉冲能量以及数kW均值功率的稳定输出。增益材料特性、腔型结构、泵浦能力、热效应、元器件性能等诸多方面都会影响再生放大器的输出特性,其中增益材料特性是最根本的因素。由于特性不同,基于不同增益材料体系的再生放大器在结构和功能上都会有较大的差异。基于不同的材料体系,介绍了各类体系下的再生放大器在发展过程中遇到的关键共性问题,以及几类典型的再生放大器及其特点。讨论了再生放大器未来的发展趋势。
  • 图  1  再生放大器基本原理图

    Figure  1.  Basic schematic diagram of regenerative amplifier

    图  2  再生腔示意图(QS和CD分别为用于调Q和导出的普克尔盒,A为孔径光阑)

    Figure  2.  Diagram of regenerative cavity(QS and CD are Pockels cells for Q switch and cavity dump;A is aperture)

    图  3  激光二极管端面泵浦再生放大器示意图(DL为激光二极管阵列,L1为阵列透镜,L2为柱透镜,L3为球面透镜,WG为光楔板)

    Figure  3.  Schematic of diode-pumped regenerative amplifier (DL,diode-laser array;L1,microlens array;L2,cylindrical lens; L3,spherical lens;WG,wedged glass plate)

    图  4  Nd:YLF环形再生放大器示意图(SLM-FL为单纵模光纤激光器,EP为扩束镜,SA为锯齿光阑,PBS为偏振分光棱镜,VSF为真空空间滤波器,PCP为相位共轭板)

    Figure  4.  Schematic diagram of Nd:YLF ring amplifier(SLM-FL, single longitudinal mode fiber laser;EP,beam expander; SA,serrated aperture;PBS,polarization beam splitter; VSF,vacuum spatial filter;PCP,phase conjugate plate)

    图  5  实验装置示意图(HR为高反镜)

    Figure  5.  Diagram of experimental setup(HR,high reflectivity mirror)

    图  6  激光装置整体示意图(CM为啁啾镜,PP-MgO:LN为周期性极化掺氧化镁铌酸锂,RTP为磷酸氧钛铷)

    Figure  6.  Diagram of laser system(CM,chirped mirror;PP-MgO:LN,MgO-doped periodically poled LiNbO3 crystal;RTP,rubidium titanyl phosphate)

    图  7  环形腔装置示意图(L1和L2为可自由调节的透镜,W1和W2为真空空间滤波器的窗口)

    Figure  7.  Diagram of ring cavity(L1 and L2,adjustable lenses; W1 and W2,windows of vacuum spatial filter)

    图  8  再生放大器光路图(vex为凸面反射镜,cav为凹面反射镜)

    Figure  8.  Optical setup of regenerative amplifier (vex,convex mirror;cav,concave mirror)

    图  9  再生放大器光路示意图

    Figure  9.  Diagram of detailed setup of the regenerative amplifier

    表  1  掺Nd激光材料基本参数

    Table  1.   Basic parameters of Nd doped laser materials

    emitting wavelength/nmemitting bandwidth/nmemitting cross section/(10-20 cm2fluorescent lifetime/μs
    Nd:YAG10640.4588.0230
    Nd:YLF10531.3532.0480
    N31 Nd:glass105325.83.8351
    下载: 导出CSV

    表  2  钛宝石基本参数

    Table  2.   Basic parameters of Ti:Sapphire

    pump wavelength/nmemitting wavelength/nmemitting cross section/(10−20 cm2fluorescent lifetime/μsthermal conductivity/(W·m−1·K−1
    53280038(800 nm)3.233(300 K)
    下载: 导出CSV

    表  3  掺Yb激光材料基本参数

    Table  3.   Basic parameters of Yb doped laser materials

    emitting wavelength/nmemitting bandwidth/nmemitting cross section/(10-20 cm2fluorescent lifetime/μs
    Yb:YAG10306.32.30951
    Yb:KYW102516.03.00600
    Yb:Lu2O3103212.01.07820
    Yb:CaF2103070.00.202400
    下载: 导出CSV
  • [1] She H, Tan S. Development and application prospects of high-energy laser weapon[J]. Infrared and Laser Engineering, 2002, 31(3): 267-271.
    [2] Abramov P I, Kuznetsov E V, Skvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems[J]. Journal of Optical Technology, 2017, 84(5): 331-341. doi: 10.1364/JOT.84.000331
    [3] Gibbon P, Förster E. Short-pulse laser-plasma interactions[J]. Plasma Physics and Controlled Fusion, 1996, 38(6): 769. doi: 10.1088/0741-3335/38/6/001
    [4] Faure J, Glinec Y, Pukhov A, et al. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
    [5] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149-e149.
    [6] Delaigue M, Hönninger C, Torres R, et al. Comparative ultrafast laser source study for advanced materials processing[C]//IEEE Conference on Lasers and Electro-Optics. 2012: 1-2.
    [7] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [8] Yanovsky V, Felix C, Mourou G. Why ring regenerative amplification(regen)?[J]. Applied Physics B, 2002, 74(1): s181-s183.
    [9] Singh S, Smith R G, Uitert L G V. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, Condensed Matter, 1974, 10(6): 2566-2572. doi: 10.1103/PhysRevB.10.2566
    [10] Harmer A L, Linz A A, Gabbe D R. Fluorescence of Nd3+ in lithium yttrium fluoride[J]. Journal of Physics and Chemistry of Solids, 1969, 90(6): 1483-1491.
    [11] Sharp E J. High-efficiency Nd3+: LiYF4 laser[J]. Journal of Applied Physics, 1973, 44(12): 5399. doi: 10.1063/1.1662164
    [12] 胡丽丽, 陈树彬, 孟涛, 等. 大口径高性能激光钕玻璃研究进展[J]. 强激光与粒子束, 2011, 32(10):2560-2564. (Hu Lili, Chen Shubin, Meng Tao, et al. Advances in high performance large aperture neodymium laser glasses[J]. High Power Laser and Particle Beams, 2011, 32(10): 2560-2564
    [13] Murray J E, Lowdermilk W H. Nd: YAG regenerative amplifier[J]. Journal of Applied Physics, 1980, 51(7): 3548-3556. doi: 10.1063/1.328194
    [14] Bado P, Bouvier M, Coe J S. Nd: YLF mode-locked oscillator and regenerative amplifier[J]. Optics Letters, 1987, 12(5): 319-321. doi: 10.1364/OL.12.000319
    [15] Saeed M, Kim D, Dimauro L F. Optimization and characterization of a high repetition rate, high intensity Nd: YLF regenerative amplifier[J]. Applied Optics, 1991, 30(18): 2527. doi: 10.1364/AO.30.002527
    [16] Dimmick T E. Semiconductor-laser-pumped, CW mode-locked Nd: phosphate glass laser oscillator and regenerative amplifier[J]. Optics Letters, 1990, 15(3): 177-179. doi: 10.1364/OL.15.000177
    [17] Gifford M, Weingarten K J. Diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 1992, 17(24): 1788-1790. doi: 10.1364/OL.17.001788
    [18] Naito K, Ohmi M, Ishikawa K, et al. Demonstration of high energy extraction efficiency in a laser-diode pumped high gain Nd: YAG regenerative amplifier[J]. Applied Physics Letters, 1994, 64(10): 1186. doi: 10.1063/1.110884
    [19] Turi L, Juhasz T. High-power longitudinally end-diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 1995, 20(2): 154-156. doi: 10.1364/OL.20.000154
    [20] Bagnoud V, Luce J, Videau L, et al. Diode-pumped regenerative amplifier delivering 100-mJ single-mode laser pulses[J]. Optics Letters, 2001, 26(6): 337-339. doi: 10.1364/OL.26.000337
    [21] Sekine T, Matsuoka S I, Yasuhara R, et al. 84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd: YLF ring amplifier with phase-conjugated wavefront corrector[J]. Optics Express, 2010, 18(13): 13927-13934. doi: 10.1364/OE.18.013927
    [22] Braun A, Liu X, Kopf D, et al. Diode-pumped Nd: glass regenerative amplifier for subpicosecond microjoule-level pulses[J]. Applied Optics, 1997, 36(18): 4163-4167. doi: 10.1364/AO.36.004163
    [23] Ribeyre X, Videau L, Migus A, et al. Nd: glass diode-pumped regenerative amplifier, multimillijoule short-pulse chirped-pulse-amplifier laser[J]. Optics Letters, 2003, 28(15): 1374-1376. doi: 10.1364/OL.28.001374
    [24] Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 1988, 27(13): 2677-2684. doi: 10.1364/AO.27.002677
    [25] Moulton P F. Spectroscopic and laser characteristics of Ti2O3[J]. J Opt Soc Am B, 1986, 3(1): 125-133. doi: 10.1364/JOSAB.3.000125
    [26] Xu M, Si J L, Zhang X C, et al. Study on thermal properties of titanium-doped sapphire crystal[J]. Journal of Synthetic Crystals, 2014, 43(5): 1043-1049.
    [27] Salin F, Squier J, Mourou G, et al. Multikilohertz Ti: Al2O3 amplifier for high-power femtosecond pulses[J]. Optics Letters, 1991, 16(24): 1964-1966. doi: 10.1364/OL.16.001964
    [28] Norris T B. Femtosecond pulse amplification at 250 kHz with a Ti: sapphire regenerative amplifier and application to continuum generation[J]. Optics Letters, 1992, 17(14): 1009-1011. doi: 10.1364/OL.17.001009
    [29] Rudd J V, Korn G, Kane S, et al. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti: Al2O3 regenerative amplifier[J]. Optics Letters, 1993, 18(23): 2044-2046. doi: 10.1364/OL.18.002044
    [30] Wynne K, Reid G D, Hochstrasser R M. Regenerative amplification of 30-fs pulses in Ti: sapphire at 5 kHz[J]. Optics Letters, 1994, 19(12): 895-897. doi: 10.1364/OL.19.000895
    [31] Yamakawa K, Aoyama M, Matsuoka S, et al. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti: sapphire amplifiers[J]. Optics Letters, 1998, 23(7): 525-527. doi: 10.1364/OL.23.000525
    [32] Nabekawa Y, Shimizu Y, Midorikawa K. Sub-20-fs terawatt-class laser system with a mirrorless regenerative amplifier and an adaptive phase controller[J]. Optics Letters, 2002, 27(14): 1265-1267. doi: 10.1364/OL.27.001265
    [33] Gaudiosi D M, Lytle A L, Kohl P, et al. 11-W average power Ti: sapphire amplifier system using downchirped pulse amplification[J]. Optics Letters, 2004, 29(22): 2665-2667. doi: 10.1364/OL.29.002665
    [34] Hong K H, Kostritsa S, Yu T J, et al. 100-kHz high-power femtosecond Ti: sapphire laser based on downchirped regenerative amplification[J]. Optics Express, 2006, 14(2): 970-978. doi: 10.1364/OPEX.14.000970
    [35] Takada H, Kakehata M, Torizuka K. High-repetition-rate 12 fs pulse amplification by a Ti: sapphire regenerative amplifier system[J]. Optics Letters, 2006, 31(8): 1145-1147. doi: 10.1364/OL.31.001145
    [36] Yang J Z H, Walker B C. 0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti: sapphire regenerative amplifier[J]. Optics Letters, 2001, 26(7): 453-455. doi: 10.1364/OL.26.000453
    [37] Zhavoronkov N, Korn G. Regenerative amplification of femtosecond laser pulses in Ti: sapphire at multikilohertz repetition rates[J]. Optics Letters, 2004, 29(2): 198-200. doi: 10.1364/OL.29.000198
    [38] Matsushima I, Yashiro H, Tomie T. 10 kHz 40 W Ti: sapphire regenerative ring amplifier[J]. Optics Letters, 2006, 31(13): 2066-2068. doi: 10.1364/OL.31.002066
    [39] Zhang X, Schneider E, Taft G, et al. Multi-microjoule, MHz repetition rate Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 2012, 20(7): 7015-7021. doi: 10.1364/OE.20.007015
    [40] Backus S, Kirchner M, Lemons R, et al. Direct diode pumped Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 2017, 25(4): 3666-3674. doi: 10.1364/OE.25.003666
    [41] Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J]. Optics Letters, 1994, 19(17): 1343-1345. doi: 10.1364/OL.19.001343
    [42] Hönninger C, Paschotta R, Graf M, et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers[J]. Applied Physics B, 1999, 69(1): 3-17. doi: 10.1007/s003400050762
    [43] Kuleshov N V, Lagatsky A A, Podlipensky A V, et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd (WO4)2[J]. Optics Letters, 1997, 22(17): 1317-1319. doi: 10.1364/OL.22.001317
    [44] Brenier A, Boulon G. Overview of the best Yb3+ -doped laser crystals[J]. Journal of Alloys & Compounds, 2001, 323(1): 210-213.
    [45] Paradis C, Modsching N, Wittwer V J, et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb: Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918-14925. doi: 10.1364/OE.25.014918
    [46] Druon F, Ricaud S, Papadopoulos D N, et al. On Yb: CaF2 and Yb: SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance[J]. Optical Materials Express, 2011, 1(3): 489-502. doi: 10.1364/OME.1.000489
    [47] Petit V, Doualan J L, Camy P, et al. CW and tunable laser operation of Yb3+ doped CaF2[J]. Applied Physics B, 2004, 78(6): 681-684. doi: 10.1007/s00340-004-1514-6
    [48] Hönninger C, Johannsen I, Moser M, et al. Diode-pumped thin-disk Yb: YAG regenerative amplifier[J]. Applied Physics B: Lasers and Optics, 1997, 65(3): 423-426. doi: 10.1007/s003400050291
    [49] Höiminger C, Zhang G, Moser M, et al. Diode-pumped thin disc Yb: YAG regenerative amplifier[C]//Advanced Solid State Lasers. 1998: TS3.
    [50] Stolzenburg C, Giesen A. Picosecond regenerative Yb: YAG thin disk amplifier at 200 kHz repetition rate and 62 W output power[C]//Advanced Solid-State Photonics. 2007: MA6.
    [51] Metzger T, Schwarz A, Teisset C Y, et al. High-repetition-rate picosecond pump laser based on a Yb: YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 2009, 34(14): 2123-2125. doi: 10.1364/OL.34.002123
    [52] Dörring J, Killi A, Morgner U, et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. Optics Express, 2004, 12(8): 1759-1768. doi: 10.1364/OPEX.12.001759
    [53] Volodin B L, Dolgy S V, Melnik E D, et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings[J]. Optics Letters, 2004, 29(16): 1891-1893. doi: 10.1364/OL.29.001891
    [54] Chyla M, Smrz M, Mocek T. High-energy, picosecond regenerative thin-disk amplifier at 1 kHz[C]//Proc of SPIE. 2012: 82351W.
    [55] Teisset C, Schultze M, Bessing R, et al. 300 W picosecond thin-disk regenerative amplifier at 10 kHz repetition rate[C]//Advanced Solid State Lasers. 2013.
    [56] Chyla M, Miura T, Smrž M, et al. 50-mJ, 1-kHz Yb: YAG thin-disk regenerative amplifier with 969-nm pulsed pumping[C]//Proc of SPIE. 2014:89590S.
    [57] Klingebiel S, Schultze M, Teisset C Y, et al. 220mJ, 1 kHz picosecond regenerative thin-disk amplifier[C]//The European Conference on Lasers and Electro-Optics. 2015.
    [58] Jung R, Tümmler J, Will I. Regenerative thin-disk amplifier for 300 mJ pulse energy[J]. Optics Express, 2016, 24(2): 883. doi: 10.1364/OE.24.000883
    [59] Jung R, Tümmler J, Nubbemeyer T, et al. Thin-disk ring amplifier for high pulse energy[J]. Optics Express, 2016, 24(5): 4375. doi: 10.1364/OE.24.004375
    [60] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [61] Krötz P, Wandt C, Grebing C, et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]//Advanced Solid State Lasers. 2019: ATh1A.
    [62] Beyertt A, Nickel D, Giesen A. Femtosecond thin-disk Yb: KYW regenerative amplifier[J]. Applied Physics B, 2005, 80(6): 655-660. doi: 10.1007/s00340-005-1796-3
    [63] Buenting U, Sayinc H, Wandt D, et al. Regenerative thin disk amplifier with combined gain spectra producing 500 μJ sub 200 fs pulses[J]. Optics Express, 2009, 17(10): 8046-8050. doi: 10.1364/OE.17.008046
    [64] Sevillano P, Brisset J G, Trophème B, et al. High energy regenerative amplifier based on Yb: CaF2[C]//Proc of SPIE. 2017: 1008223.
    [65] Caracciolo E, Pirzio F, Kemnitzer M, et al. 42 W femtosecond Yb: Lu2O3 regenerative amplifier[J]. Optics Letters, 2016, 41(15): 3395-3398. doi: 10.1364/OL.41.003395
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  229
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-11
  • 修回日期:  2020-07-01
  • 刊出日期:  2020-09-13

目录

    /

    返回文章
    返回