留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ka波段分布作用速调管降压收集极设计

王柳亚 丁海兵

王柳亚, 丁海兵. Ka波段分布作用速调管降压收集极设计[J]. 强激光与粒子束, 2020, 32: 083001. doi: 10.11884/HPLPB202032.200093
引用本文: 王柳亚, 丁海兵. Ka波段分布作用速调管降压收集极设计[J]. 强激光与粒子束, 2020, 32: 083001. doi: 10.11884/HPLPB202032.200093
Wang Liuya, Ding Haibing. Design of depressed collector for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 083001. doi: 10.11884/HPLPB202032.200093
Citation: Wang Liuya, Ding Haibing. Design of depressed collector for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 083001. doi: 10.11884/HPLPB202032.200093

Ka波段分布作用速调管降压收集极设计

doi: 10.11884/HPLPB202032.200093
详细信息
    作者简介:

    王柳亚(1996—),女,硕士研究生,从事高功率微波源技术研究;wangliuya9604@163.com

    通讯作者:

    丁海兵(1977—),男,博士,研究员,从事高功率微波真空电子器件及微波能应用系统的研究;dinghb@aircas.ac.cn

  • 中图分类号: TN122

Design of depressed collector for Ka-band extended interaction klystron

  • 摘要: 为满足无线传能系统对高效率大功率毫米波功率源的迫切需求,开展大功率连续波速调管高效率技术研究,采用降压收集极技术实现速调管在效率上的有效提升。主要介绍了某Ka波段大功率连续波分布作用速调管(EIK)降压收集极的设计方案,包括注-波互作用后废电子能量分布及行为特性的研究,收集极初始条件、结构及电极电压的设计,给出了单级降压收集极和两级降压收集极的设计和计算结果。三维粒子模拟(PIC)计算结果表明,该Ka波段连续波EIK采用单级降压收集极时回收效率为41.0%,采用两级降压收集极时回收效率为68.8%,EIK总管效率相比于未采用降压收集极技术时的27.5%上升至54.8%,表明通过降压收集极技术可有效提升毫米波大功率速调管工作效率。
  • 图  1  总效率和电子效率、收集极效率的关系

    Figure  1.  Relationship between tube efficiency, electronic efficiency and collector efficiency

    图  2  4级降压收集极的回收功率示意图

    Figure  2.  Recovery power of the four-stage depressed collector

    图  3  废电子电流随时间周期性变化

    Figure  3.  Waste electron current changes periodically with time

    图  4  一个射频周期内携带不同能量的粒子数目统计图

    Figure  4.  Number of particles carrying different energy in one RF cycle

    图  5  一个射频周期内等间隔的8个时间点

    Figure  5.  Eight equal interval points in one RF cycle

    图  6  8等分时间点上携带不同能量的粒子数目统计图

    Figure  6.  Number of particles carrying different electron energy of point 1~8

    图  7  单级降压收集极的结构示意图

    Figure  7.  Structure of one-stage depressed collector

    图  8  未对收集极实施电压降时的电子轨迹

    Figure  8.  Electron beams trajectories in collector without voltage drop

    图  9  单级降压收集极电子轨迹

    Figure  9.  Electron beams trajectories in one-stage depressed collector

    图  10  初始两级降压收集极的结构示意图

    Figure  10.  Structure of initial two-stage depressed collector

    图  11  改进后的二级降压收集极的结构示意图

    Figure  11.  Structure of improved two-stage depressed collector

    图  12  两级降压收集极内的电子轨迹

    Figure  12.  Electron beams trajectories in two-stage depressed collector

    表  1  EIK的主要设计参数

    Table  1.   Main design parameters of the Ka-band extended interaction klystron(EIK)

    frequency/GHzbeam voltage/kVbeam current/Aoutput power of CW/kWefficiency/%gain/dB
    35100.491.3527.554
    下载: 导出CSV

    表  2  部分废电子信息

    Table  2.   Information of part of waste electrons

    x position/my position/mz position/m$ {u}_{x} $$ {u}_{y} $$ {u}_{z} $mass/kgcharge/Cmacro particle charge/Ctime/s
    −1.23E−04−2.81E−054.10E−02−1.28E−032.68E−030.1649.10E−31−1.60E−19−2.22E−162.50E−08
    −1.12E−04−5.39E−054.10E−02−1.83E−032.25E−030.1649.10E−31−1.60E−19−2.17E−162.50E−08
    −1.18E−04−3.67E−054.10E−029.95E−04−4.13E−030.1659.10E−31−1.60E−19−2.66E−162.50E−08
    −2.46E−05−2.33E−044.10E−02−7.46E−03−9.42E−030.1649.10E−31−1.60E−19−1.87E−162.50E−08
    −9.48E−05−9.30E−054.10E−023.41E−03−2.00E−030.1649.10E−31−1.60E−19−2.39E−162.50E−08
    −9.44E−05−9.35E−054.10E−023.37E−03−2.01E−030.1649.10E−31−1.60E−19−2.39E−162.50E−08
    下载: 导出CSV

    表  3  单级降压收集极的设计参数

    Table  3.   Design parameters of the one-stage depressed collector

    drift length/mmdrift entrance radius/mmdrift exit radius/mmcollector length/mmcollector entrance radius/mmcollector exit radius/mm
    80.450.671.50.95
    下载: 导出CSV

    表  4  单级降压收集极的回收效率、回流率与压降的关系

    Table  4.   Relationship between recovery efficiency, reflux rate and voltage drop of the one-stage depressed collector

    voltage/kVrecovery efficiency/%electron reflux rate/%
    −3.0 26 0
    −4.0 40 0
    −4.1 41 0.02
    −4.2 43 1.00
    −4.3 44 1.05
    −5.0 54 3.20
    −6.0 68 4.60
    下载: 导出CSV

    表  5  初始两级降压收集极的设计参数

    Table  5.   Design parameters of initial two-stage depressed collector

    length/mmentrance radius/mmexit radius/mm
    driftone-stage collectortwo-stage collectordriftone-stage collectortwo-stage collectordriftone-stage collectortwo-stage collector
    8 31 40 0.35 0.9 3 0.6 5 5
    下载: 导出CSV

    表  6  改进后的两级降压收集极设计参数

    Table  6.   Design parameters of improved two-stage depressed collector

    length/mmentrance radius/mmexit radius/mm
    driftone-stage collectortwo-stage collectordriftone-stage collectortwo-stage collectordrift one-stage collectortwo-stage collector
    813.527.5 0.350.76 0.655
    下载: 导出CSV

    表  7  优化的各级压降及回收效率

    Table  7.   Design parameters of improved two-stage depressed collector

    voltage of the first stage/kVvoltage of the second stage/kVrecovery efficiency/%
    −4.1 −10 68.8
    −3.7 −9 49.2
    −3.0 −8 53.6
    −2.1 −7 38.7
    −1.5 −6 43.1
    −0.6 −5 37.3
    −4.0 −4 40.0
    下载: 导出CSV

    表  8  不同初始条件下的回收效率和整管效率

    Table  8.   Recovery efficiency and tube efficiency under different initial conditions

    initial conditionrecovery efficiency/%tube efficiency/%
    PID 172.457.8
    PID 270.956.1
    PID 364.551.6
    PID 468.854.8
    PID 567.954.1
    PID 666.152.8
    PID 771.356.9
    PID 872.858.2
    下载: 导出CSV
  • [1] 洪伟, 余超, 陈继新, 等. 毫米波与太赫兹技术[J]. 中国科学: 信息科学, 2016, 46(8):1086-1107. (Hong Wei, Yu Chao, Chen Jixin, et al. Millimeter wave and terahertz technology[J]. Scientia Sinica Informationis, 2016, 46(8): 1086-1107 doi: 10.1360/N112016-00069
    [2] 丁耀根. 功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25. (Ding Yaogen. The technical status and latest progress of high-power klystron[J]. Vacuum Electronic, 2020(1): 1-25
    [3] Srivastava V, Sinha A K, Josh S N, et al. Design of four-stage depressed collector for a high efficiency helix TWT[C]//Third IEEE International Vacuum Electronics Conference. 2002: 257-258.
    [4] Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Trans Electron Devices, 1961, 8(1): 44-15. doi: 10.1109/T-ED.1961.14708
    [5] 张长青, 阮存军, 王树忠, 等. 梯形结构高功率扩展互作用速调管[J]. 红外与毫米波学报, 2015, 34(3):307-313. (Zhang Changqing, Ruan Cunjun, Wang Shuzhong, et al. High-power extended-interaction klystron with ladder-type structure[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 307-313 doi: 10.11972/j.issn.1001-9014.2015.03.010
    [6] 丁耀根. 大功率速调管的设计制造与应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Design, manufacture and application of high-power klystrons[M]. Beijing: National Defense Industry Press, 2010
    [7] 刘宇荣, 刘斌, 王大明. 大功率行波管两级降压收集极的设计[J]. 强激光与粒子束, 2017, 29:103002. (Liu Yurong, Liu Bin, Wang Daming. Design of two stage depressed collector for high-power traveling wave tube[J]. High Power Laser and Particle Beams, 2017, 29: 103002 doi: 10.11884/HPLPB201729.170144
    [8] Gao Dongping, Ding Yaogen, Zhang Zhaochuan, et al. Design of a continuous wave Ka-band extended interaction klystron[C]//2014 IEEE International Vacuum Electronics Conference. 2014.
    [9] Ding Haibing, Tang Liang, Song Yihao, et al. Design of a Ka-band CW extended interaction klystron[C]//2018 IEEE International Vacuum Electronics Conference. 2018.
    [10] Gilmour A S. Klystron, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Beijing: National Defense Industry Press, 2012.
    [11] 寇建勇, 闫铁昌, 盛兴. 用Opera3D计算速调管多级降压收集极[J]. 真空电子技术, 2017(6):71-74. (Kou Jianyong, Yan Tiechang, Sheng Xing. Simulation of MDCs for klystrons using Opera 3D[J]. Vacuum Electronic, 2017(6): 71-74
    [12] 刘明辉. 多级降压收集极的模拟与实验研究[D]. 成都: 电子科技大学, 2012: 10-25.

    Liu Minghui. Simulation and experimental study of multistage depressed collector[D]. Chengdu: University of Electronic Science and Technology, 2012: 10-25
    [13] 郑志清, 罗勇, 蒋伟, 等. 回旋行波管收集极的热分析[J]. 强激光与粒子束, 2013, 25(3):721-726. (Zheng Zhiqing, Luo Yong, Jiang Wei, et al. Thermal analysis of gyrotron traveling-wave tube collector[J]. High Power Laser and Particle Beams, 2013, 25(3): 721-726 doi: 10.3788/HPLPB20132503.0721
    [14] 白现臣, 杨建华, 张建德, 等. 电子束收集极对大间隙速调管输出腔效率的影响[J]. 强激光与粒子束, 2011, 23(6):1625-1628. (Bai Xianchen, Yang Jianhua, Zhang Jiande, et al. Influence of electron beam collector on output cavity efficiency of wide-gap klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(6): 1625-1628 doi: 10.3788/HPLPB20112306.1625
    [15] 耿志辉, 刘濮鲲, 粟亦农, 等. W波段连续波30 kW回旋振荡管高频系统和收集极的设计[J]. 强激光与粒子束, 2011, 23(11):3036-3038. (Geng Zhihui, Liu Pukun, Su Yinong, et al. Design of interaction circuit and collector for W-band continuous wave 30 kW gyrotron oscillator[J]. High Power Laser and Particle Beams, 2011, 23(11): 3036-3038 doi: 10.3788/HPLPB20112311.3036
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  1797
  • HTML全文浏览量:  392
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-18
  • 修回日期:  2020-06-14
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回