留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z箍缩聚变及高能量密度应用研究进展

肖德龙 丁宁 王冠琼 王小光 李晨光 毛重阳

肖德龙, 丁宁, 王冠琼, 等. Z箍缩聚变及高能量密度应用研究进展[J]. 强激光与粒子束, 2020, 32: 092005. doi: 10.11884/HPLPB202032.200094
引用本文: 肖德龙, 丁宁, 王冠琼, 等. Z箍缩聚变及高能量密度应用研究进展[J]. 强激光与粒子束, 2020, 32: 092005. doi: 10.11884/HPLPB202032.200094
Xiao Delong, Ding Ning, Wang Guanqiong, et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32: 092005. doi: 10.11884/HPLPB202032.200094
Citation: Xiao Delong, Ding Ning, Wang Guanqiong, et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32: 092005. doi: 10.11884/HPLPB202032.200094

Z箍缩聚变及高能量密度应用研究进展

doi: 10.11884/HPLPB202032.200094
基金项目: 国家自然科学基金项目(11775032,51790522,51790524,11845009,51907008,11805019)
详细信息
    作者简介:

    肖德龙(1979—),男,博士,研究员,从事Z箍缩聚变等离子体理论与数值模拟研究;xiao_delong@iapcm.ac.cn

    通讯作者:

    丁 宁(1958—),女,博士,研究员,从事Z箍缩聚变等离子体理论与数值模拟研究;ding_ning@iapcm.ac.cn

  • 中图分类号: O532

Review of Z-pinch driven fusion and high energy density physics applications

  • 摘要: 基于脉冲功率技术的Z箍缩过程可以实现驱动器电储能到X光辐射的高效率转换,形成极端温度、密度、压力条件,近年来在惯性约束聚变及高能量密度应用中取得了一系列重要进展。综述了国际上辐射间接驱动和磁直接驱动两条Z箍缩聚变技术路线发展现状,简要介绍了我国Z箍缩聚变尤其是7~8 MA脉冲功率装置上的动态黑腔研究进展;分别从辐射与物质相互作用、辐射不透明度、材料动态特性、实验室天体物理等方面,概述了Z箍缩应用于高能量密度物理研究的技术路线和主要成果。希望通过对Z箍缩聚变及高能量密度应用研究的论述和发展趋势分析,推动我国Z箍缩研究领域的进一步发展。
  • 图  1  双Z箍缩黑腔聚变构型示意图(其中A、B是初级黑腔,C是靶球,D是次级黑腔,E是辐条电极,F是馈入电流的电极)[20]

    Figure  1.  Schematic of double Z-pinch hohlraum driven ICF(A,B are primary hohlraums,C is the capsule,D is the secondary hohlraum,E points to spoke electrodes,F presents the feed-in electrode)[20]

    图  2  动态黑腔驱动靶内爆示意图[24]

    Figure  2.  Schematic of dynamic hohlraum driven target implosions[24]

    图  3  模拟给出的动态黑腔驱动靶丸内爆总体过程参数分布和靶丸运动轨迹

    Figure  3.  Parameter distribution of dynamic hohlraum driven target implosion and target trajectories in simulations

    图  4  动态黑腔等离子体参数分布及实验图像[32]

    Figure  4.  Simulated plasma profiles and experimental images of dynamic hohlraums[32]

    图  5  MagLIF构型及高增益靶示意图[8,33]

    Figure  5.  Schematic of MagLIF configuration and high gain MagLIF[8,33]

    图  6  Al套筒Z箍缩内爆MRT发展图像[34]

    Figure  6.  MRT development of Al liner Z-pinch implosion[34]

    图  7  模拟和实验给出的薄套筒扰动发展图像[44,45]

    Figure  7.  Simulated and experimental perturbation development of thin liner implosions[44,45]

    图  8  Z装置MagLIF实验中子产额和聚变等离子体温度[9]

    Figure  8.  Fusion yields and plasma temperatures of MagLIF experiments on the Z facility[9]

    图  9  Z装置K壳层辐射谱[55]

    Figure  9.  Spectra of Z-pinch K-shell radiation on the Z facility[55]

    图  10  不透明度实验示意图和Fe辐射不透明度数据[10,62]

    Figure  10.  Schematic of opacity experiments and Fe opacity data[10,62]

    图  11  7~8 MA装置飞片和准等熵实验速度数据[70,72]

    Figure  11.  Velocity data of flyer plate and quasi-isentrope experiments on 7~8 MA facility[70,72]

    图  12  等离子体射流形成示意图[12]

    Figure  12.  Schematic of plasma jet formation[12]

  • [1] Deeney C, Douglas M R, Spielman R B. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Physical Review Letters, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
    [2] Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Reviews of Modern Physics, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167
    [3] Cuneo M E, Vesey R A, Porter J L, et al. Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept[J]. Physics of Plasmas, 2001, 8(5): 2257-2267. doi: 10.1063/1.1348328
    [4] Sanford T W L, Nash T J, Mock R C, et al. Evidence and mechanisms of axial-radiation asymmetry in dynamic hohlraums driven by wire-array Z pinches[J]. Physics of Plasmas, 2005, 12: 022701. doi: 10.1063/1.1850479
    [5] Cuneo M E, Vesey R A, Porter J L, et al. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions[J]. Physical Review Letters, 2002, 88: 215004. doi: 10.1103/PhysRevLett.88.215004
    [6] Slutz S A, Vesey R A, Herrmann M C. Compensation for time-dependent radiation-drive asymmetries in inertial-fusion capsules[J]. Physical Review Letters, 2007, 99: 175001. doi: 10.1103/PhysRevLett.99.175001
    [7] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49: B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [8] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [9] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [10] Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2014, 517(1): 56-59.
    [11] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
    [12] Lebedev S V, Frank A, Ryutov D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Reviews of Modern Physics, 2019, 91: 025002. doi: 10.1103/RevModPhys.91.025002
    [13] Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348: 1455-1460. doi: 10.1126/science.aaa7471
    [14] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1: 48-58. doi: 10.1016/j.mre.2016.01.004
    [15] Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire Array Z-pinch and dynamic holhraum in the IAPCM[J]. Matter and Radiation at Extremes, 2016, 1: 135-152. doi: 10.1016/j.mre.2016.06.001
    [16] Xu Rongkun, Li Zhenghong, Yang Jianlun, et al. Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility[J]. Chinese Physics B, 2005, 14(8): 1613-1617. doi: 10.1088/1009-1963/14/8/026
    [17] Zhu Xinlei, Zou Xiaobing, Zhang Ran, et al. X-ray backlighting of the initial stage of single and multiwire Z-pinch[J]. IEEE Trans on Plasma Science, 2012, 40(12): 3329-3333. doi: 10.1109/TPS.2012.2218622
    [18] Wang Liangping, Li Mo, Han Juanjuan. Conversion of electromagnetic energy in Z-pinch processes of single planar wire arrays at 1.5MA[J]. Physics of Plasmas, 2014, 21(6): 062706. doi: 10.1063/1.4882876
    [19] Wu Jian, Lu Yihan, Sun Fengju, et al. Preconditioned wire array Z-pinches driven by a double pulse current generator[J]. Plasma Physics and Controlled Fusion, 2018, 60: 075014. doi: 10.1088/1361-6587/aac4fe
    [20] Vesey R A, Herrmann M C, Lemke R W, et al. Target design for high fusion yield with the double Z-pinch-driven hohlraum[J]. Physics of Plasmas, 2007, 14: 056302. doi: 10.1063/1.2472364
    [21] Olson R E, Leeper R J, Batha S H, et al. Pulsed power indirect drive approach to inertial confinement fusion[J]. High Energy Density Physics, 2020, 36: 100749.
    [22] Stygar W A, Ives H C, Fehl D L, et al. X-ray emission from Z pinches at 10<sup>7</sup> A: Current scaling, gap closure, and shot-to-shot fluctuations[J]. Physical Review E, 2004, 69: 046403. doi: 10.1103/PhysRevE.69.046403
    [23] Mazarakis M G, Cuneo M E, Stygar W A, et al. X-ray emission current scaling experiments for compact single-tungsten-wire arrays at 80-nanosecond implosion times[J]. Physical Review E, 2009, 79: 016412. doi: 10.1103/PhysRevE.79.016412
    [24] Mehlhorn T A, Bailey J E, Bennett G, et al. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies[J]. Plasma Physics and Controlled Fusion, 2003, 45: A325-A334. doi: 10.1088/0741-3335/45/12A/021
    [25] Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [26] Xiao Delong, Sun Shunkai, Zhao Yingkui, et al. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums[J]. Physics of Plasmas, 2015, 22: 052709. doi: 10.1063/1.4921332
    [27] Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
    [28] Slutz S A, Olson C L, Peterson P. Low mass recyclable transmission lines for Z-pinch driven inertial fusion[J]. Physics of Plasmas, 2003, 10(2): 429-437. doi: 10.1063/1.1533789
    [29] 肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203. (Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [30] Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Physics of Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331
    [31] Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Physics of Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771
    [32] Ye Fan, Xiao Delong, Meng Shijian, et al. Investigation on the main characteristics of dynamic hohlraum formation on the Julong-1 facility[J]. submitted to Physics of Plasmas.
    [33] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [34] Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA 100-ns Z facility[J]. Physical Review Letters, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
    [35] Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Physics of Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911
    [36] McBride R D, Slutz S A, Jennings C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 2012, 109: 135004. doi: 10.1103/PhysRevLett.109.135004
    [37] McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Physics of Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079
    [38] Peterson K J, Sinars D B, Yu E P, et al. Electrothermal instability growth in magnetically driven pulsed power liners[J]. Physics of Plasmas, 2012, 19: 092701. doi: 10.1063/1.4751868
    [39] Peterson K J, Yu E P, Sinars D B, et al. Simulations of electrothermal instability growth in solid aluminum rods[J]. Physics of Plasmas, 2013, 20: 056305. doi: 10.1063/1.4802836
    [40] Peterson K J, Awe T J, Yu E P, et al. Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Physical Review Letters, 2014, 112: 135002. doi: 10.1103/PhysRevLett.112.135002
    [41] Awe T J, McBride R D, Jennings C A, et al. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Physical Review Letters, 2013, 111: 235005. doi: 10.1103/PhysRevLett.111.235005
    [42] Awe T J, Jennings C A, McBride R D, et al. Modified helix-like instability structure on imploding Z-pinch liners that are preimposed with a uniform axial magnetic field[J]. Physics of Plasmas, 2014, 21: 056303. doi: 10.1063/1.4872331
    [43] Wang Guanqiong, Xiao Delong, Wang Xiaoguang, et al. Effect of external axial magnetic field on the early stage instabilities in magnetized cylindrical liners[J]. Physics of Plasmas, 2019, 26: 112704. doi: 10.1063/1.5121596
    [44] Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
    [45] Wang Xiaoguang, Sun Shunkai, Xiao Delong, et al. Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the Primary Test Stand[J]. Chinese Physics B, 2019, 28: 035201. doi: 10.1088/1674-1056/28/3/035201
    [46] Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Physics of Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931
    [47] Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Physics of Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
    [48] Peterson K. Progress in preconditioning MagLIF fuel and its impact on performance[R]. SAND2017-6187PE, 2017.
    [49] Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
    [50] Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Physics of Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551
    [51] Shipley G A, Awe T J, Hutsel B T, et al. Implosion of auto-magnetizing helical liners on the Z facility[J]. Physics of Plasmas, 2019, 26: 052705. doi: 10.1063/1.5089468
    [52] Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Physics of Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
    [53] Hansen S B, Gomez M R, Sefkow A B, et al. Diagnosing magnetized liner inertial fusion experiments on Z[J]. Physics of Plasmas, 2015, 22: 056313. doi: 10.1063/1.4921217
    [54] Gomez M. Performance scaling with drive parameters in Magnetized Liner Inertial Fusion experiments[C]//61st Annual Meeting of the APS Division of Plasma Physics. 2019.
    [55] Ampleford D J, Jones D J, Jennings C A, et al. Contrasting physics in wire array Z pinch sources of 1-20 keV emission on the Z facility[J]. Physics of Plasmas, 2014, 21: 056708. doi: 10.1063/1.4876621
    [56] Ampleford D J, Hansen S B, Jennings C A, et al. Opacity and gradients in aluminum wire array Z-pinch implosions on the Z pulsed power facility[J]. Physics of Plasmas, 2014, 21: 031201. doi: 10.1063/1.4865224
    [57] Peterson R R, Peterson D L, Watt R G, et al. Blast wave radiation source measurement experiments on the Z Z-pinch facility[J]. Physics of Plasmas, 2006, 13: 056901. doi: 10.1063/1.2186050
    [58] Chrien R E, Matuska W, Idzorek Jr. G, et al Measurement and simulation of apertures on Z hohlraums[J]. Review of Scientific Instruments, 1999, 70(1): 557-560. doi: 10.1063/1.1149354
    [59] 李沫, 王亮平. Z 箍缩软X 射线辐射能量薄膜量热计改进技术[J]. 强激光与粒子束, 2013, 25(8):2142-2146. (Li Mo, Wang Liangping. Improvement on resistive bolometer for measuring total soft X-ray yield generated by Z-pinches[J]. High Power Laser and Particle Beams, 2013, 25(8): 2142-2146 doi: 10.3788/HPLPB20132508.2142
    [60] 盛亮, 李阳, 袁媛, 等. 表面绝缘铝平面丝阵Z箍缩实验研究[J]. 物理学报, 2014, 63:055201. (Sheng Liang, Li Yang, Yuan Yuan, et al. Experimental study of insulated aluminum planar wire array Z pinches[J]. Acta Physica Sinica, 2014, 63: 055201 doi: 10.7498/aps.63.055201
    [61] Bailey J E, Rochau G A, Iglesias C A, et al. Iron-plasma transmission measurements at temperatures above 150 eV[J]. Physical Review Letters, 2008, 99: 265002.
    [62] Bailey J E, Rochau G A, Mancini R C, et al. Diagnosis of X-ray heated Mg/Fe opacity research plasmas[J]. Review of Scientific Instruments, 2008, 79: 113104. doi: 10.1063/1.3020710
    [63] Flicker D G, Benage J F, Desjarlais M P, et al. Sandia dynamic materials program strategic plan[R]. SAND2017-4664R, 2017.
    [64] Asay J R, Hall C A, Konard C H, et al. Use of Z-pinch sources for high pressure equation-of-state studies[J]. International Journal of Impact Engineering, 1999, 23: 27-38. doi: 10.1016/S0734-743X(99)00059-7
    [65] Lemke R W, Knudson M D, Davis J-P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38: 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [66] Cochrane K R, Lemke R W, Riford Z, et al. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper[J]. Journal of Applied Physics, 2016, 119: 105902. doi: 10.1063/1.4943417
    [67] Knudson M D, Desjarlais M P, Dolan D H. Shock-wave exploration of the high-pressure phases of carbon[J]. Science, 2008, 322: 1822-1825. doi: 10.1126/science.1165278
    [68] Davis J-P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863
    [69] Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014, 115: 043530. doi: 10.1063/1.4863463
    [70] 王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63:196201. (Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS[J]. Acta Physica Sinica, 2014, 63: 196201 doi: 10.7498/aps.63.196201
    [71] 郭帅, 王贵林, 张朝晖, 等. 聚龙一号准等熵压缩实验负载优化研究[J]. 强激光与粒子束, 2016, 28:015015. (Guo Shuai, Wang Guilin, Zhang Zhaohui, et al. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Paticle Beams, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015
    [72] 王贵林, 张朝晖, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28:055010. (Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measurement of quasi-isentrope for copper on PTS[J]. High Power Laser and Paticle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
    [73] Bennett M J, Lebedev S V, Hall G N, et al. Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory[J]. High Energy Density Physics, 2015, 17: 63-67. doi: 10.1016/j.hedp.2015.02.001
    [74] Coverdale C A, Deeney C, Velikovich, et al. Neutron production and implosion characteristics of a deuterium gas-puff Z pinch[J]. Physics of Plasmas, 2007, 14: 022706. doi: 10.1063/1.2446177
    [75] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Special Topics–Accelerators and Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [76] Grabovski E V. Wire array investigation on Angara-5-1 and Baikal Project[C]//IEEE Pulsed Power & Plasma Science. 2013.
    [77] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201. (Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
  • 加载中
图(12)
计量
  • 文章访问数:  3419
  • HTML全文浏览量:  539
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 修回日期:  2020-07-16
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回