留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条纹及分幅相机技术发展概述

田进寿

田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32: 112003. doi: 10.11884/HPLPB202032.200119
引用本文: 田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32: 112003. doi: 10.11884/HPLPB202032.200119
Tian Jinshou. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32: 112003. doi: 10.11884/HPLPB202032.200119
Citation: Tian Jinshou. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32: 112003. doi: 10.11884/HPLPB202032.200119

条纹及分幅相机技术发展概述

doi: 10.11884/HPLPB202032.200119
详细信息
    作者简介:

    田进寿(1970—),男,研究员,从事超快诊断技术研究工作;TIANJS@OPT.AC.CN

  • 中图分类号: TB872

Introduction to development of streak and framing cameras

  • 摘要: 介绍了超快诊断技术研究的意义,概述了条纹相机和分幅相机的研究历史及现状,分析了几种主流条纹管的技术特点及主要应用领域,比较了国内外超快诊断设备研制单位特点,分析了我国在超快诊断技术方面所取得的成就、存在的问题并对下一步发展出路进行初步的分析与探讨。
  • 图  1  6200型和7200型条纹管

    Figure  1.  Picture of Model 6200 and Model 7200 streak tubes

    图  2  6200-II型长狭缝高时空分辨条纹管

    Figure  2.  Long slit tube with high spatial and temporal resolution

    图  3  C11853-1型飞秒条纹管内部电极结构图

    Figure  3.  Inner structure of streak tube C11853-1

    图  4  极限时间分辨与光电子脉冲中电子数量的关系图

    Figure  4.  Temporal resolution vs the amount of electrons

    图  5  西安光机所研制研制的部分核心探测器

    Figure  5.  Key detectors developed in XIOPM

    图  6  9200型同步扫描条纹管

    Figure  6.  Picture of synchronization tube 9200

    图  7  工程化X射线飞秒条纹相机

    Figure  7.  Picture of X-ray femotosencond streak camera

    图  8  是部分商业化条纹相机实物照

    Figure  8.  Partially commercialized streak cameras developed in XIOPM

    图  9  西安光机所研制的5200型和2200型条纹相机实物照片

    Figure  9.  Pictures of streak cameras of Model 5200 and 2200 developed in XIOPM

    图  10  西安光机所研制的4200型工程化相机和2200型X光条纹相机在实验现场

    Figure  10.  Pictures of X ray streak cameras of Model 4200 and 2200 at the experimental site

    图  11  条纹管四种代表性的电子光学结构形式

    Figure  11.  Four representative opto-electronical structures of streak tube

    图  12  增强器选通型分幅相机组成框架图

    Figure  12.  Frame diagram of intensifier gated framing camera

    图  13  行波选通型分幅相机原理图及实物照片

    Figure  13.  Schematic diagram and picture of travelling wave gated framing camera

    图  14  Kentech公司工程化分幅相机

    Figure  14.  Kentech’s engineering framing camera

    图  15  美国Los Alamos国家实验室(LANL)大尺寸选通X射线分幅相机

    Figure  15.  Large size gated X-ray framing camera at Los Alamos National Laboratory(LANL)

    图  16  分幅相机动态增益均匀性改善,30%@80 mm

    Figure  16.  (30%@80 mm) Improved of dynamic gain uniformity of framing camera

    图  17  大画幅分幅相机微带线以及工程化分幅相机

    Figure  17.  Microstrip line of large frame framing camera and photos of engineering framing camera

    图  18  时间展宽分幅相机的结构图和原理图

    Figure  18.  Structure diagram and schematic diagram of dilation X-ray imager(DIXI)

    图  19  单视线X射线成像系统

    Figure  19.  Single line of sight(SLOS)of X-ray imaging system

    图  20  深圳大学研制的时间展宽分幅相机及静态分辨测试

    Figure  20.  DIXI developed by Shenzhen University and its static resolution test

    图  21  静态空间分辨率可见第四组分划板信息(对应20 lp/mm)和准动态空间分辨率可见第三组分划板信息(对应14 lp/mm)

    Figure  21.  Static spatial resolution information,indicated in the fourth component partition(corresponding to 20 lp/mm),and quasi-dynamic spatial resolution, indicated in the third component partition(corresponding to 14 lp/mm)

    图  22  扫描分幅管的原理图

    Figure  22.  Schematic diagram of scanning framing tube[71-72]

    表  1  6200-II型条纹管主要性能指标

    Table  1.   Main specifications of Model 6200-II streak tube

    effective working
    area of cathode
    time resolution/psspatial resolution/(lp·mm−1)magnificationdeflection sensitivity/(mm·kV-1)streak tube size
    ≥36 mm×6 mm ≤5 (center)18 mm:≥40
    (sides)9 mm:≥10
    0.8 38.9 ϕ74 mm×370 mm
    下载: 导出CSV

    表  2  6200-II型条纹管性能指标与国际类似长狭缝条纹管比较表

    Table  2.   Comparison of specifications between Model 6200-II streak tube and internationally similar long-slit streak tubes

    No.tube typeeffective working area
    of cathode
    static spatial resolution/(lp·mm−1physical time
    resolution/ps
    # 6200-II, Xi'an Institute of Optics and mechanics(CAS) 36 mm×6 mm >40 <5
    1 6200 35 mm×5 mm 40 50
    2 ST-Y, Photek(United Kingdom) 35 mm×5 mm 40 50
    3 P510/slit, Photonics(France) 35 mm×4 mm 10 5
    4 PV 400, BIFO(Russia) 35 mm×4 mm 20 2
    5 N3831, Hamamatsu(Japan) 25 mm×15 mm 35 10
    6 Shenzhen University Long Slit Streak Tube ϕ30 mm 15 8
    下载: 导出CSV

    表  3  中国科学院西安光学精密机械研究所研制的系列化条纹相机基本性能表

    Table  3.   Basic performance table of serialized streak tubes developed by XIOPM

    modelgate
    structure
    time
    resolution/
    ps
    spatial
    resolution/
    (lp·mm−1
    brightness
    gain
    cathode
    size
    magnificationscreen
    area
    accelerating
    voltage/
    kV
    deflection
    sensitivity/
    (mm·kV−1
    operating
    mode
    similar
    type
    1200 rect. hole ≤0.5 ≥40 ϕ6 mm ~2.3 ϕ40 mm 15 23 single
    2200 grid ≤5 ≥30 ~0.5 ϕ17 mm ~2.0 ϕ40 mm 0.76 60 synchronize
    3200 rect. hole ≤2 ≥40 ~1 15 mm×1 mm ~2.3 ϕ40 mm 15 38 single and repeat Photonis P800 series
    4200 grid ≤5 ≥25 ~3 ϕ30 mm 1.3 ϕ40 mm 15 45 single
    5200 Grid ≤5 ≥30 ~0.5 ϕ17 mm ~2.3 ϕ40 mm 0.76 60 single and repeat
    6200 rect. hole ≤30⑥ ≥25 ~10 35 mm×4 mm 0.75 ϕ40 mm 15 22 single Photek ST-Y;Photonis P500 series;Bifo PV400
    7200 rect. hole ≤30⑥ ≥25 ~10 18 mm×2 mm 0.75 ϕ30 mm 15 15 single Photek ST-X;Photonis P900 series
    8200 round hole ≤30 ≥25 ~5 ϕ25 mm 1.0 ϕ30 mm 15 7 single Bifo PV201
    9200 grid ≤2 ≥30 ~0.5 ϕ10 mm 2.6 ϕ40 mm 0.7 120 synchronize Photek
    Photron V
    Notes:① Presently femtosecond cameras have only X-ray band response, and the brightness gain has not been measured; ② Similar to that by Jun Feng at the National Laboratory of the Livermore, USA and C6183 (FESCA-200) of Hamamatsu Photonics, Japan;③ Early worldwide universal inverted image type streak tubes, as those in the United States, Britain, Japan, France and Russia; ④ The same type as that commonly used in Shenzhen University and Research Center of Laser Fusion of CAEP; ⑤ The temporal resolution can be increased to about 10ps by adjusting the voltage of the image converter, but at the expense of degradatim the spatial resolution.
    下载: 导出CSV

    表  4  利弗莫尔国家实验室和西安光机所分幅相机对比

    Table  4.   Comparison of framing camera parameters between Lawrence Livermore National Laboratory (LLNL) and XIOPM

    time resolution/psspatial resolution/(lp·mm)number of framessensitive surfacesynchronization accuracy/ps
    LLNL 60 20 16 105 mm×105 mm 20
    XIOPM 60 20 16 105 mm×105 mm 20
    下载: 导出CSV

    表  5  基于条纹相机的二维超快成像技术及其基本参数表

    Table  5.   Basic parameters of two-dimensional ultrafast imaging technology based on streak camera

    scanning framing imagingtime resolution
    (time of exposure)/ps
    number of
    frames
    camera operation
    mode
    single
    exposure
    multi imaging X-ray scanning framing imaging technology①11.7≥15single scanningyes
    Single exposure ultrafast imaging technology with non-parallax tilt lens array②2512single scanningyes
    sampling imaging scanning framing technology③2single scanningyes
    rotating mirror assisted femtosecond photography④1.71≤480synchronous scanningno
    compression sensing imaging⑤35≤350single scanningyes
    Notes:① Shiraga H,et al. Laser-imploded core structure observed by using two-dimensional x-ray imaging with 10-ps temporal resolution[J]. Rev. of Sci. Instrum. 1995,66:722-724. ② Heshmat B,et al. Single-shot ultrafast imaging using parallax-free alignment with a tilted lenslet array,CLEO Sci. Innov. http://dx.doi.org/10.1364/CLEO_SI.2014.STu3E.7(2014). ③ Li Ji,Qu Junle,Niu Hanben. Sampling-image streak framing technique,2004,13(4):461-466. ④ Velten A,et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging [J]. Nature Commun. 2012,3,745. ⑤ Gao L,et al. Single-shot compressed ultrafast photography at one hundred billion frames per second [J]. Nature,2014,516:74-77
    下载: 导出CSV

    表  6  国内外条纹管/条纹相机整机研制情况一览表

    Table  6.   Capabicity of developing streak tube/camera of the manufactors on the world

    No.countrymanufactordesign of
    streak tube
    photocathode of streak tubestreak
    camera
    remarks
    X-raysolar
    blind
    ultraviolet
    visible(muti
    alkali)
    infrared
    non-transfertransferS1(Ag-
    O-Cs)
    InGaAs/lnP/
    Ag(Au)
    singlerepeatedsynchron-ized
    1JapanHamamatsu
    2RussiaVNIIOFI(Bifo)
    3GPI
    4FrancePhotonis
    5GermanyOptronis
    6UKPhotek
    7Kentech
    8CanadaAXIS
    9USACordin
    10LLNL
    11Sydor
    12ChinaXIOPM
    13Shenzhen University
    14CETC55
    15NNVT
    16Institute of Fluid Physics, CAEP
    17Laser fusion research center, CAEP
    下载: 导出CSV
  • [1] Peplow M. The next big hit in molecule Hollywood[J]. Nature News, 2017, 544(7651): 408. doi: 10.1038/544408a
    [2] Johnson C B. Photoelectronic streak-tube technology review[C]//Proc of SPIE. 1977, 94: 13-18
    [3] Trebino R, Daniel J K. Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency resolved optical gating[J]. J of Opt Soc Am A, 1993, 10(5): 1101-1111. doi: 10.1364/JOSAA.10.001101
    [4] Iaconis C, Walmsley I A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[J]. Opt Lett, 1998, 23(10): 792-794. doi: 10.1364/OL.23.000792
    [5] Sabrina R Nagela, Hilsabeck T J, Ayers M J, et al. 2D magnetic field warp reversal in images taken with DIXI (dilation X-ray imager)[C]//Proc of SPIE. 2016: 88500I.
    [6] Sun RenPing, Lai XuanYang, Liu Xiaojun, et al. Tomographic extraction of the internuclear separation based on two-center interference with aligned diatomic molecules[J]. Phys Rev Lett, 2019, 122: 193202.
    [7] Itatani J, Quéré F, Corkum P B, et al. Attosecond streak camera[J]. Phys Rev Lett, 2002, 88: 173903. doi: 10.1103/PhysRevLett.88.173903
    [8] Zhao Kun, Zhang Qi, Chang Zenghu, et al. Multiphoton processes and attosecond physics[M]//Route to One Atomic Unit of Time: Development of a Broadband Attosecond Streak Camera.2012.
    [9] Yurtsever A , Zewail A H. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy[J]. Science, 209, 326: 708-712.
    [10] Nakagawa K, Iwasaki A, Sakuma I, et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photon, 2014, 8: 695-700. doi: 10.1038/nphoton.2014.163
    [11] Yu Lu, Chen Feng, Wang Lidai. Compressed ultrafast spectral-temporal photography[J]. Phys Rev Lett, 2019, 122: 193904. doi: 10.1103/PhysRevLett.122.193904
    [12] Conrtney-Pratt J S. A new method for the photographic study of fast transient phenomena[J]. Research Supply, 1949, 2(6): 287-295.
    [13] Bradley D J, Liddy B, Sleat W E. Direct linear measurement of ultrashort light pulses with a picosecond streak camera[J]. Optics Communication, 1971, 8(2): 391-395.
    [14] 顾礼. X射线飞秒条纹变像管设计与性能提高研究[D]. 深圳: 深圳大学, 2015, 10-13.

    Gu Li. Research on X-ray femtosecond streak tube design and performance improvement[D]. Shenzhen: Shenzhen University, 2015: 10-13.
    [15] Howorth J, Milnes J, Fisher Y, et al. The development of a streak tube with improved time and spatial resolution [C]//Proc of SPIE. 2017: 103280Q.
    [16] Sibbett W, Niu H, Baggs M R. Femtosecond streak image tube[C]//Proc of SPIE. 1983, 348: 271-275.
    [17] Katsuyuki K, Motohiro S, Yoshinori I, et al. Femtosecond streak tube[C]//Proc of SPIE. 1993, 1982: 180-185.
    [18] Chang Zenghu, Rundquist A, Kapteyn H, et al. Demonstration of a 0. 54-ps X-ray streak camera[C]//Proc of SPIE. 1997, 2869: 971-976.
    [19] Feng J, Shin H J, Young A T, et al. An X-ray streak camera with high spatio-temporal resolution[J]. Appl Phy Lett, 2007, 91: 134102. doi: 10.1063/1.2793191
    [20] 牛憨笨. 变像管诊断技术[J]. 光子学报, 1988, 18(1):196-205. (Niu Hanben. Technique of image tube diagnostics[J]. Acta Photonics, 1988, 18(1): 196-205
    [21] 薛鸣球, 黄玉金, 赵葆常, 等. 光学系统时间畸变和色时间滞后的研究[J]. 光子学报, 1995, 24(6):481-483. (Xue Mingqiu, Huang Yujin, Zhao Baochang, et al. Research on the aberration and spectral lag off of optical system[J]. Acta Photonics, 1995, 24(6): 481-483
    [22] Shakya M M, Chang Zenghu. An accumulative X-ray streak camera with 280-fs resolution[C]//Proc of SPIE. 2004, 5534: 125-131.
    [23] Danilenko K N, Zyuzin L N, Slavnov Yu K, et al. High-speed image converter instrument engineering of VNIIOFI is 40 years old[C]//Proc of SPIE. 2007: 627908.
    [24] Zavoisky E K, Fanchenko S D. Image converter high-speed photography with 10-9~10-14sec time resolution[J]. Appl Opt, 1965, 4(9): 1155-1167. doi: 10.1364/AO.4.001155
    [25] Friedman W, Jackel S. Dynamic range and spatial resolution of picoseconds streak cameras[C] // Proc of SPIE. 1976, 97: 544-547.
    [26] Ageeva N V, Andreev S V, Schelev M, et al. Sub-100 fs streak tube: computer-aided design, manufacturing, and testing[C]//Proc of SPIE. 2009: 71261B.
    [27] Kinoshita K, Suyama M, Ito M, et al, Femtosecond streak tube[C]//Proc of SPIE. 1990, 1358: 490-491.
    [28] Lebedev V B, Feldman G G, Veinbein P, et al. Development and testing of subpicosecond streak camera for soft X-ray measurements[C]//Proc of SPIE. 1999, 3516: 74-84.
    [29] Kinoshita K, Ishihara Y, Abe S, et al. Development of a single-shot streak tube with 100 fs time resolution[C]//The 31st International Congress on High-speed Imaging and Photonics. 2016: 305-310.
    [30] https: //www. hamamatsu. com/eu/en/product/photometry-systems/streak-camera/index. html
    [31] Girard A, Loty C, Allamargot J L, et al, P 700 : A new high speed streak tube with lamellar electron optics[C] // Proc of SPIE. 1984, 491: 58-62.
    [32] Alain Mens, Dominique Gontier, Huilizen J C, et al. High-spatiotemporal-resolution X-ray streak cameras with bilamellar tubes: experimental confirmation of the performance[C]//Proc of SPIE. 1993, 1801: 502-513.
    [33] Mens A, Dalmasso J M, Sauneuf R, et al. C 850X picosecond high-resolution streak camera[C]// Proc of SPIE. 1993, 1358: 315-328.
    [34] Gallant P, Forget P, Kieffer J C, et al. Characterization of a subpicosecond X-ray streak camera for ultrashort laser-produced plasmas experiments[J]. Rev Sci Instrum, 2000, 71(10): 3627-3633. doi: 10.1063/1.1310347
    [35] De Mascureau J, Mens A, Mexmain J M, et al, C 850 X-ray streak camera with optimized spatio-temporal resolution[C]//Proc of SPIE. 1988, 981: 86-92.
    [36] https://www.photonis.com/products/streak-tubes/index.html
    [37] Rebuffie J C, Mens A, New streak tubes of the P500 series: features and experimental results[C]// Proc of SPIE. 1990, 1358: 511-523.
    [38] Niu H, Sibbett W. Theoretical analysis of space charge effects in photochron streak camera[J]. Rev Sci Instrum, 1981, 52(12): 1830-1836. doi: 10.1063/1.1136540
    [39] Niu H, Zhang H, Wang X H, et al. A new picosecond synchroscan streak image tube [C]//Proc of SPIE. 1988, 1032: 468-471
    [40] Guo Baoping, Niu Hanben. Synchroscan streak camera with fixed frequency for diagnosing light pulses with arbitrary repetition rates[C]//Proc of SPIE. 1997, 2869: 149-153.
    [41] Niu Hanben, Zhang Hai, Yang Qinlao, et al. Experimental study of femtosecond streak image tube[C]//Proc of SPIE. 1992, 1801: 1035-1041.
    [42] Qu Junle, Niu Hanben. A soft X-ray streak camera with slit length of 30mm[J]. Chinese Journal of Lasers, 1998, B7(2): 120-125.
    [43] 廖华, 胡昕, 杨勤劳, 等. 宽量程高时间分辨扫描变像管[J]. 强激光与粒子束, 2011, 23(1):79-82. (Liao Hua, Hu Xin, Yang Qinglao, et al. Wide range and high temporal resolution streak tube[J]. High Power Laser and Particle Beams, 2011, 23(1): 79-82 doi: 10.3788/HPLPB20112301.0079
    [44] Gavganen L, Diamant L, Fedorov V, et al. Nanosecond frame cameras based upon proximity focused image intensifiers[C]//Proc of SPIE. 1968, 41: 232-236.
    [45] Lieber A J, Sutphin H D. Nanosecond gating of proximity focused channel plate intensifiers[J]. Rev Sci Inst, 1972, 43(1): 104-109. doi: 10.1063/1.1685402
    [46] Lieber A J, Sutphin H D. Nanosecond high resolution framing camera[J]. Rev Sci Inst, 1971, 42(11): 1663-1667. doi: 10.1063/1.1684962
    [47] Nahrath B, Shakhatre M, Decker G. Nanosecond X-ray pictures recorded with a pulsed channel plate[J]. Rev Sci Instrum, 1976, 1: 88-92.
    [48] Eckart M J, Hanks R l, Kilkenny J D, et al. Large-area 200-ps gated microchannel plate detector[J]. Rev Sci Instrum, 1986, 57(8): 2046-2048. doi: 10.1063/1.1138785
    [49] Kilkenny J D, Bell P, Hanks R, et al. High speed gated X ray imagers[J]. Rev Sci Instr, 1988, 59(8): 1793-1796. doi: 10.1063/1.1140115
    [50] Ladislas J. Microchannel plate detectors[J]. Nuclear Instruments and Methods, 1979, 162: 587-601. doi: 10.1016/0029-554X(79)90734-1
    [51] Lieber A J. Picosecond framing camera using a passive microchannel plate[J]. App Opt, 1979, 18(6): 745-746. doi: 10.1364/AO.18.000745
    [52] Fehl D L, Chang J, Mendel CW, et al. Five-frame X-ray camera for charged particle inertial confinement fusion studies[J]. Rev Sci Instrum, 1980, 3: 292-296.
    [53] Arvid S, Lundy. Ultrafast gating of proximity focused microchannel-plate intensifiers[C]//15th Inter Congr on High Speed Photograph and Photonics.1982,348: 178-189.
    [54] Young B K F, Stewartand R E, Woodworth J G. Experiment demonstration of a 100-ps microchannel plate framing camera[J]. Rev Sci Instrum, 1986, 11: 2729-2733.
    [55] Bell P M, Killkenny J D, Hanks R, et al. Measurements with a 35 ps gate time microchannel plate camera[C]//Proc of SPIE. 1990, 456: 1346.
    [56] Benedetti L R, Bell P M, Bradley D K, et al. Crosstalk in X-ray framing cameras: Effect on voltage, gain, and timing[J]. Rev Sci Instrum, 2012, 83: 10E135. doi: 10.1063/1.4740524
    [57] Izumi N, Hall G N, Bell P M, et al. Development of a dual MCP framing camera for high energy X-rays[J]. Rev Sci Instrum, 2014, 85: 11D623. doi: 10.1063/1.4891712
    [58] Lugten J B, Brown C G Jr, Piston K W, et al. Optimizing the input and output transmission lines that gate the microchannel plate in a high-speed framing camera[C]//Proc of SPIE. 2015: 95910L.
    [59] Kimbrough J R, Bell P M, Bradley D K, et al. Standard design for National Ignition Facility X-ray streak and framing cameras[J]. Rev of Sci Instrum, 2010, 81: 10E530. doi: 10.1063/1.3496990
    [60] Koga M, Shiraga H. Gain depletion of X-ray framing camera[J]. Rev of Sci Instrum, 2017, 88: 083514. doi: 10.1063/1.4999757
    [61] Nagel S R, Carpenter A C, Park J. The dilation aided single−line−of−sight X−ray camera for the National Ignition Facility: Characterization and fielding[J]. Rev of Sci Instrum, 2018, 89: 10G125. doi: 10.1063/1.5038671
    [62] 常增虎, 山冰. 微通道板选通X射线皮秒分幅相机[J]. 光子学报, 1995, 24(6):501-508. (Chang Zenghu, Shan Bing. MCP gated of X-ray framing camera[J]. Acta Photonics, 1995, 24(6): 501-508
    [63] 成金秀, 温天舒, 朱宗元, 等. MCP选通X射线皮秒分幅相机在ICF中的应用[J]. 强激光与粒子束, 1996, 8(1): 73-77.

    Cheng Jinxiu, Wen Tianshu, Zhu Zongyuan, et al. Multiframe gated microchannel-Rlate X-ray camera used in intertial confinement on ICF faculty[J]. High Power Laser and Particle Beams, 1996, 8(1): 73-77
    [64] 成金秀, 杨存榜, 温天舒, 等. 门控MCP软X射线皮秒多分幅相机[J]. 强激光与粒子束, 1999, 11(5): 596-600.

    Cheng Jinxiu, Yang Cunbang, Wen Tianshu, et al. MCP gated of soft X-ray multi-frame camera[J]. High Power Laser and Particle Beams, 1999, 11(5): 596-600
    [65] Shan Bing, Yanagidaira T, Shimoda K, et al. Quantitative measurement of X-ray images with a gated microchannel plate system in a Z-pinch plasma experiment[J]. Rev Sci Instrum, 1999, 70(3): 1688-1693. doi: 10.1063/1.1149652
    [66] Chang Zenghu. Two MCPs gated in cascade for picosecond framing photography[C]//Proc of SPIE. 1995, 2513: 119-124
    [67] Nagel S R, Hilsabeck T J, Dymoke-Bradshaw A K L, et al. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Rev Sci Instrum, 2014, 85: 11E504. doi: 10.1063/1.4890396
    [68] Cai Houzhi, Fu Wenyong, Liu Jinyuan, et al. Dilation X-ray framing camera and its temporal resolution uniformity[J]. Opt Express, 2019, 27: 2817-2827. doi: 10.1364/OE.27.002817
    [69] Cai Houzhi, Fu Wenyong, Liu Jinyuan, et al. Synchronous gating in dilation X-ray detector without 1: 1 image ratio[J]. Opt Express, 2019, 27: 12470-12482. doi: 10.1364/OE.27.012470
    [70] Kalibjian R. 100-ps framing-camera tube[J]. Rev of Sci Instrum, 1978, 49(7): 891-896. doi: 10.1063/1.1135594
    [71] Ludikov V V, Prokhorov A M, Chevokin V K. A subnanosecond multi-framing camera[J]. Advances in Electronics and Electron Physics, 1998, 74: 239-246.
    [72] Lebedev V B, Feldman G G, Kolesov G V, et al. Tests and further development of universal image-converter picosecond camera[C]//Proc of SPIE. 1993, 1801: 528-535.
    [73] 牛憨笨, 张焕文, 杨勤劳, 等. 变像管皮秒分幅和飞秒扫描相机的实验研究[J]. 光子学报, 1991, 21(1):11-20. (Niu Hanben, Zhang Huanwen, Yang Qinlao, et al. Experimental study of picosecond framing and femotsecond streak camera[J]. Acta Photonics, 1991, 21(1): 11-20
    [74] Feng Jie, Ding Yongkun, Niu Hanben, et al. Improvements of UV/X-ray framing image tube cameras [C]//Proc of SPIE. 1997, 2869: 664-667.
    [75] Shiraga H, Heya M, Fujishima A, et al. Laser-imploded core structure observed by using two-dimensional X‐ray imaging with 10 ps temporal resolution[J]. Rev Sci Instrum, 1995, 66(1): 722-724. doi: 10.1063/1.1146482
    [76] Heshmat B, Satat G, Barsi C, et al. Single-shot ultrafast imaging using parallax-free alignment with a tilted lenslet array[C]//IEEE, Lasers & Electro-Optics. 2014.
    [77] 常增虎, 侯询, 张小秋, 等. X射线皮秒变象管分幅相机研究[J]. 光子学报, 1987, 17(1):1-6. (Chang Zenghu, Hou Xun, Zhang Xiaoqiu, et al. Primary investigation of X ray picosecend frame camera[J]. Acta Photonics, 1987, 17(1): 1-6
    [78] 李冀, 屈军乐, 牛憨笨, 等. 取样成像扫描式分幅技术[J]. 强激光与粒子束, 2004, 13(4): 461-466.

    Li Ji, Qu Junle, Niu Hanben, et al. Sampling-image streak framing technique[J]. High Power Laser and Particle Beams, 2004, 13(4): 461-466
    [79] Shiraga H, Miyanaga N, Heya M, et al. Ultrafast two-dimensional X-ray imaging with X-ray streak cameras for laser fusion research[J]. Rev Sci Instrum, 1997, 68(1): 745-749. doi: 10.1063/1.1147690
    [80] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012, 3(3): 745.
    [81] Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516: 74-77. doi: 10.1038/nature14005
    [82] Shiraga H. Review of concepts and applications of image sampling on high-speed streak cameras[C]//Proc of SPIE. 2016: 103280R.
    [83] https://www.cordin.com/streak.html
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  208
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-07-01
  • 刊出日期:  2020-09-13

目录

    /

    返回文章
    返回