留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线掠入射显微成像诊断技术研究进展

徐捷 穆宝忠 陈亮 李文杰 徐欣业 王新 王占山 张兴 丁永坤

徐捷, 穆宝忠, 陈亮, 等. X射线掠入射显微成像诊断技术研究进展[J]. 强激光与粒子束, 2020, 32: 112001. doi: 10.11884/HPLPB202032.200133
引用本文: 徐捷, 穆宝忠, 陈亮, 等. X射线掠入射显微成像诊断技术研究进展[J]. 强激光与粒子束, 2020, 32: 112001. doi: 10.11884/HPLPB202032.200133
Xu Jie, Mu Baozhong, Chen Liang, et al. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32: 112001. doi: 10.11884/HPLPB202032.200133
Citation: Xu Jie, Mu Baozhong, Chen Liang, et al. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32: 112001. doi: 10.11884/HPLPB202032.200133

X射线掠入射显微成像诊断技术研究进展

doi: 10.11884/HPLPB202032.200133
基金项目: 国家重点研发计划项目(2017YFA0403300)
详细信息
    作者简介:

    徐捷:徐 捷(1990—),男,博士后,主要从事X射线光学研究;1310581@tongji.edu.cn

    通讯作者:

    穆宝忠(1975—),男,教授,主要从事X射线光学研究;mubz@tongji.edu.cn

  • 中图分类号: O434.1

Progress of grazing incidence X-ray micro-imaging diagnosis technology

  • 摘要: 高精密的X射线成像诊断是深入理解内爆过程,揭示点火尺度下未知物理问题的关键。基于掠入射反射的X射线显微镜,结合亚纳米级的超光滑球面或非球面反射镜,能够实现空间分辨优于5 μm的高分辨成像。介绍了国际惯性约束聚变领域的X射线显微成像技术发展及应用,重点展示了我国在高分辨X射线(KB)显微镜、多通道X射线KB显微镜以及大视场X射线KBA显微镜方向的进展,分析了下一阶段超高分辨X射线显微成像的研究计划。通过不断的技术创新,我国的X射线显微成像诊断能力已经达到国际先进水平。
  • 图  1  内爆燃料压缩状态的理想与现实[10]

    Figure  1.  Ideal and actual implosion fuel compression

    图  2  KB显微镜的光学结构

    Figure  2.  Optical structure of KB microscope

    图  3  用于NIF装置的四通道KB显微镜结构设计图[33]

    Figure  3.  Structural design drawing of four-channel KB microscope deployed in NIF

    图  4  四通道KB显微镜对Ni网格的成像标定实验结果[34]

    Figure  4.  Experimental results of imaging calibration of Ni grid with four-channel KB microscope

    图  5  (a)16通道KB显微镜采用的异形反射镜;(b)铜网背光成像结果;(c)DT冷冻靶内爆热斑的时间演化图像[38]

    Figure  5.  (a)The special-shaped mirror used in the 16-channel KB microscope;(b)Example framed images obtained with KBFRAMED of a backlit Cu grid;(c)KBFRAMED images of hot-spot X-ray emission from a cryogenic target implosion.

    图  6  应用于Z-pinch装置的Wolter显微镜物镜实物图[41]

    Figure  6.  Picture of Wolter microscope objective applied to Z-pinch device

    图  7  NIF研制的Wolter显微成像系统光路图[42]

    Figure  7.  Optical path diagram of Wolter micro-imaging system developed by NIF

    图  8  多通道超环面镜X射线显微镜及网格背光成像结果[26]

    Figure  8.  Multi-channel toroidal mirror X-ray microscope GXI-1 and grid backlight imaging results

    图  9  三种不同类型薄膜的结构示意图

    Figure  9.  Schematic diagram of three different types of films

    图  10  Ir膜、W/B4C周期多层膜以及非周期多层膜的反射率曲线示意图

    Figure  10.  Reflectance curves of Ir single-layer film,W/B4C periodic multilayer film and non-periodic multilayer film

    图  11  不同薄膜类型的X射线显微成像异同

    Figure  11.  Difference of X-ray imaging with single layer,period multilayer and non-period multilayer films

    图  12  用于系统装调的双周期多层膜示意图

    Figure  12.  Schematic diagram of double-period multilayer film used for system assembly

    图  13  (a)双目瞄准节和(b)KB显微镜的耦合示意图[46]

    Figure  13.  (a)Schematic of the optical binocular system(OBS)and(b) its connection with the KB module

    图  14  (a)网格电镜标定结果;(b)网格背光成像实验结果;(c)分辨率标定结果

    Figure  14.  (a)SEM calibration results of four-quadrant grid;(b)Backlight imaging experiment results of four-quadrant grid;(c)Resolution calibration results

    图  15  高分辨X射线KB显微镜在我国强激光装置上的应用

    Figure  15.  Diagnostic experiments of X-ray KB microscope at Shenguang laser facility

    图  16  时空分辨四通道KB显微镜结构图[47]

    Figure  16.  Optical structure for the time-gated four-channel KB microscope

    图  17  基于“扫描针孔+Si-PIN谱探测器”的X射线显微镜标定方法[48]

    Figure  17.  X-ray microscope intensity calibration method based on “scanning pinhole+Si-PIN spectrum detector”

    图  18  (a)四通道KB显微镜示意图;(b)神光II装置4.75 keV能点下四象限Cu网格成像[49];(c)双扰动振幅CH调制靶分幅成像实验

    Figure  18.  (a)Schematic of four-channel KB microscope;(b)4.75 keV four-channel KB imaging results of four-quadrant Cu grids at Shenguang II laser facility;(c)Diagnostic experiment of double turbulent amplitudes

    图  19  四通道KB显微镜中心视场分辨率

    Figure  19.  Center field of view resolution of four-channel KB microscope

    图  20  四通道KB显微镜热斑测量结果

    Figure  20.  Results of hot-spot measurement with four-channel KB microscope

    图  21  八通道KB显微镜的光学结构与网格背光成像结果[50]

    Figure  21.  Optical structure of eight-channel KB microscope and grid backlight imaging results

    图  22  神光Ⅲ装置开展的两台KB显微镜的协同诊断[46]

    Figure  22.  Experimental configuration for collaborative X-ray imaging diagnostics at Shenguang III laser facility

    图  23  KBA-KB系统结构草图[16]

    Figure  23.  Dual-channel microscope system sketch.

    图  24  2.5 keV与4.3 keV金网格靶内爆静态成像实验[16]

    Figure  24.  Static image of gold mesh target at 2.5 keV and 4.3 keV in implosion experiments

    图  25  STTS构型非球面KBA显微镜光路图

    Figure  25.  Optical path diagram of STTS configuration aspherical KBA microscope

    图  26  超高分辨KB显微镜光学性能仿真

    Figure  26.  Simulation of optical performance of ultra-high resolution KB microscope

    表  1  不同膜系的KB显微镜性能比较

    Table  1.   Comparison of KB microscope performance with different films

    grazing angle/(˚)field of view/µmresolution/µmreflectivity/%image field uniformityenergy resolution
    ir single layer 0.425 160 6 60 high non
    W/B4C periodic multilayer 1.133 200 4 50 low ~30
    W/B4C non-periodic multilayer 1.133 350 5 10 high <10
    下载: 导出CSV
  • [1] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435-448. doi: 10.1038/nphys3736
    [2] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [3] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [4] Pu Y, Huang T, Ge F, et al. First integrated implosion experiments on the SG-III laser facility[J]. Plasma Physics and Controlled Fusion, 2018, 60: 101864.
    [5] Yan J, Zhang X, Li J, et al. Preliminary experiments of the hohlraum-driven double-shell implosion on Shenguang-III laser facility[J]. Nuclear Fusion, 2018, 58: 076020.
    [6] Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the Shenguang-III laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006.
    [7] Hurricane O A, Callahan D, Casey D, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800-806. doi: 10.1038/nphys3720
    [8] Smalyuk V A, Robey H F, Alday C L, et al. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 102707. doi: 10.1063/1.4995568
    [9] Haines B M, Olon R E, Sweet W, et al. Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions[J]. Physics of Plasmas, 2019, 26: 012707. doi: 10.1063/1.5080262
    [10] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 2016, 23: 041006.
    [11] 董建军, 邓克立, 王强强, 等. 基于多通道Kirkpatrick-Baez显微镜的内爆热斑不对称性实验研究[J]. 核聚变与等离子体物理, 2018, 38:125-129. (Dong Jianjun, Deng Keli, Wang Qiangqiang, et al. Experimental study on the asymmetry of implosion hot spot based on multi-channel Kirkpatrick-Baez microscope[J]. Nuclear Fusion and Plasma Physics, 2018, 38: 125-129
    [12] 黎航, 蒲昱东, 景龙飞, 等. 间接驱动的内爆不对称性随腔长和时间变化的研究[J]. 物理学报, 2013(22):317-322. (Li Hang, Pu Yudong, Jing Longfei, et al. Variations of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion[J]. Acta Physica Sinica, 2013(22): 317-322
    [13] Pu Y, Huang T, Wei M, et al. Spectroscopic studies of shell mix in directly driven implosion on SG-III prototype laser facility[J]. Physics of Plasmas, 2014, 21: 122707. doi: 10.1063/1.4904041
    [14] He S, Ding Y, Miao W, et al. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot[J]. Physics of Plasmas, 2016, 23: 072708. doi: 10.1063/1.4959114
    [15] Wu J F, Miao W Y, Wang L F, et al. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility[J]. Physics of Plasmas, 2014, 21: 042707.
    [16] Xie Qing, Mu Baozhong, Li Yaran, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility[J]. Optics Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
    [17] 温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012.

    Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics. Beijing: National Defense Industry Press, 2012
    [18] Wen S, Cheng J, Yang C, et al. Application of an X-ray framing camera in ICF diagnostic[C]//Proc of SPIE. 2001, 4424: 188.
    [19] 曹磊峰, 郑志坚, 丁永坤, 等. X光环孔编码成像技术研究[J]. 强激光与粒子束, 2003, 15(8):764-768. (Cao Leifeng, Zheng Zhijian, Ding Yongkun, et al. Investigation of X-ray ring aperture coded imaging technique[J]. High Power Laser and Particle Beams, 2003, 15(8): 764-768
    [20] Kirkpatrick P, Baez A V. Formation oflcal images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766. doi: 10.1364/JOSA.38.000766
    [21] Wolter V H. Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen[J]. Annalen der Physik, 1952, 6(10): 94-114.
    [22] Aoki S, Sakayanagi Y. X-ray imaging with toroidal mirror[J]. Applied Optics, 1978, 17(4): 601-603. doi: 10.1364/AO.17.000601
    [23] Stoeckl C, Bedzyk M, Brent G, et al. Soft X-ray backlighting of cryogenic implosions using a narrowband crystal imaging system[J]. Review of Scientific Instruments, 2014, 85: 11E501.
    [24] Koch J A, Lee J J, Haugh M J. High miller-index germanium crystals for high-energy X-ray imaging applications[J]. Applied Optics, 2015, 54(34): 10227-10231. doi: 10.1364/AO.54.010227
    [25] 陈伯伦, 韦敏习, 杨正华, 等. 球面弯晶的背光成像特性[J]. 强激光与粒子束, 2013, 25(3):641-645. (Chen Bolun, Wei Minxi, Yang Zhenghua, et al. Character of backlight imaging based on spherically bent crystal[J]. High Power Laser and Particle Beams, 2013, 25(3): 641-645 doi: 10.3788/HPLPB20132503.0641
    [26] Rosch R, Trosseille C, Caillaud T, et al. First set of gated X-ray imaging diagnostics for the Laser Megajoule facility[J]. Review of Scientific Instruments, 2016, 87: 033706.
    [27] Ceglio N M, Attwood D T, George E V. Zone-plate coded imaging of laser-produced plasmas[J]. Journal of Applied Physics, 1977, 48(4): 1566-1569. doi: 10.1063/1.323834
    [28] Do A, Troussel P, Baton S D, et al. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror[J]. Review of Scientific Instruments, 2017, 88: 013701. doi: 10.1063/1.4973296
    [29] Christensen F E. X-ray multilayers in diffractometers, monochromators, and spectrometers[M]. Bellingham: SPIE press, 1988.
    [30] Marshall F J, Allen M M, Knauer J P, et al. A high-resolution X-ray microscope for laser-driven planar-foil experiments[J]. Physics of Plasmas, 1998, 5(4): 1118-1124. doi: 10.1063/1.872642
    [31] Marshall F J, Oertel J A. A framed monochromatic X-ray microscope for ICF[J]. Review of Scientific Instruments, 1997, 68(1): 735-739. doi: 10.1063/1.1147688
    [32] Pardini T, McCarville T J, Walton C C, et al. Optical and multilayer design for the first Kirkpatrick-Baez optics for X-ray diagnostic at NIF[C]//Target Diagnostics Physics and Engineering for Inertial Confinement Fusion II. 2013: 8850.
    [33] Pickworth L A, McCarville T, Decker T, et al. A Kirkpatrick-Baez microscope for the National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 11D611. doi: 10.1063/1.4886433
    [34] Pickworth L A, Bradley D, Pardini T, et al. A Kirkpatrick-Baez microscope for core implosion imaging at NIF[C]//APS Meeting Abstracts. 2013.
    [35] Pickworth L A, Ayers J, Bell P, et al. The National Ignition Facility modular Kirkpatrick-Baez microscope[J]. Review of Scientific Instruments, 2016, 87: 11E316. doi: 10.1063/1.4960417
    [36] Marshall F J, Oertel J A, Walsh P J. Framed, 16-image, Kirkpatrick-Baez microscope for laser–plasma X-ray emission[J]. Review of Scientific Instruments, 2004, 75(10): 4045-4047. doi: 10.1063/1.1789258
    [37] Marshall F J. Compact Kirkpatrick–Baez microscope mirrors for imaging laser-plasma X-ray emission[J]. Review of Scientific Instruments, 2012, 83: 10E578.
    [38] Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick-Baez X-ray microscope[J]. Review of Scientific Instruments, 2017, 88: 093702. doi: 10.1063/1.5000737
    [39] Ramsey B D. Replicated nickel optics for the hard-X-ray region[J]. Experimental Astronomy, 2005, 20(1/3): 85-92.
    [40] Liu D, Khaykovich B, Gubarev M V, et al. Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors[J]. Nature Communications, 2013, 4: 2556. doi: 10.1038/ncomms3556
    [41] Bourdon C J, Vogel J, Wu M. Wolter imaging on Z[R]. (SNL-NM), Albuquerque: Sandia National Laboratories, 2015.
    [42] Vogel J. National ICF Diagnostics Working Group meeting[R]. NDWG, 2015.
    [43] 穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20(3):409-412. (Mu Baozhong, Yi Shengzhen, Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF[J]. High Power Laser and Particle Beams, 2008, 20(3): 409-412
    [44] Bennett G R. Advanced one-dimensional X-ray microscope for the OMEGA laser facility[J]. Review of Scientific Instruments, 1999, 70(1): 608-612. doi: 10.1063/1.1149433
    [45] Le Breton J P, Alozy E, Boutin J Y, et al. Laser integration line target diagnostics first result[J]. Review of Scientific Instruments, 2006, 77: 10F530. doi: 10.1063/1.2349746
    [46] Li Y, Dong J, Xie Q, et al. Development of a polar-view Kirkpatrick-Baez X-ray microscope for implosion asymmetry studies[J]. Optics Express, 2019, 27(6): 8348. doi: 10.1364/OE.27.008348
    [47] Yi S, Mu B, Wang X, et al. A four-channel multilayer KB microscope for high-resolution 8-keV X-ray imaging in laser-plasma diagnostics[J]. Chinese Optics Letters, 2014, 12: 013401.
    [48] Li Y, Xie Q, Chen Z, et al. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source[J]. Review of Scientific Instruments, 2018, 89: 013704. doi: 10.1063/1.5003959
    [49] 穆宝忠, 吴雯靓, 伊圣振, 等. 4.75 keV能点四通道Kirkpatrick-Baez显微镜[J]. 强激光与粒子束, 2013, 25(4):903-907. (Mu Baozhong, Wu Wenliang, Yi Shengzhen, et al. 4.75 keV four-channel Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2013, 25(4): 903-907 doi: 10.3788/HPLPB20132504.0903
    [50] Li Yaran, Mu Baozhong, Xie Qing, et al. Development of an X-ray eight-image Kirkpatrick–Baez diagnostic system for China’s laser fusion facility[J]. Applied Optics, 2017, 56(12): 3311. doi: 10.1364/AO.56.003311
    [51] 伊圣振, 穆宝忠, 王新, 等. 用于平面靶 X射线诊断的1维KBA显微镜[J]. 强激光与粒子束, 2012, 24(5):1076-1080. (Yi Shengzhen, Mu Baozhong, Wang Xin, et al. One-dimensional KBA microscope for planar target diagnosis[J]. High Power Laser and Particle Beams, 2012, 24(5): 1076-1080 doi: 10.3788/HPLPB20122405.1076
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  169
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-07-01
  • 刊出日期:  2020-09-13

目录

    /

    返回文章
    返回