留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段长脉冲相对论速调管重复频率运行稳定性研究

黄华 陈昭福 袁欢 何琥 李士锋 刘振帮 罗光耀 王淦平 雷禄容

黄华, 陈昭福, 袁欢, 等. S波段长脉冲相对论速调管重复频率运行稳定性研究[J]. 强激光与粒子束, 2020, 32: 103002. doi: 10.11884/HPLPB202032.200167
引用本文: 黄华, 陈昭福, 袁欢, 等. S波段长脉冲相对论速调管重复频率运行稳定性研究[J]. 强激光与粒子束, 2020, 32: 103002. doi: 10.11884/HPLPB202032.200167
Huang Hua, Chen Zhaofu, Yuan Huan, et al. Research on stability of repetitive operation of S-band, long-pulse relativistic klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103002. doi: 10.11884/HPLPB202032.200167
Citation: Huang Hua, Chen Zhaofu, Yuan Huan, et al. Research on stability of repetitive operation of S-band, long-pulse relativistic klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103002. doi: 10.11884/HPLPB202032.200167

S波段长脉冲相对论速调管重复频率运行稳定性研究

doi: 10.11884/HPLPB202032.200167
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    黄 华(1970—),男,博士,研究员,从事高功率微波源研究;hhua0457@163.com

  • 中图分类号: TN62

Research on stability of repetitive operation of S-band, long-pulse relativistic klystron

  • 摘要: 为了进一步提高S波段高功率强流长脉冲相对论速调管放大器(RKA)的重复频率稳频稳相运行的性能,采用实验结合理论和模拟的方法,分析了其主要制约因素,特别分析了造成器件脉冲缩短和重复频率运行不稳定等问题的根源。研究结果表明,RKA中的中间腔和输出腔的电子反射、电子散焦轰击腔体鼻锥是造成脉冲缩短、重复频率运行不稳定的主要根源。通过采用大漂移管半径的器件结构、在漂移管中加载吸波材料以及引导磁场位形、采用电子发射较均匀的碳/碳复合阴极材料等措施,使杂频振荡、脉冲缩短和重复频率工作不稳定性等问题得到了明显减轻,输出微波相位稳定性得到显著提高。采用电压830 kV、束流7.7 kA、脉宽190 ns的环行电子束驱动S波段3腔RKA,重复频率25 Hz运行得到了峰值功率1.55 GW、脉宽163 ns、相位抖动18°(rms)的输出微波。
  • 图  1  RKA重复频率不稳定运行波形

    Figure  1.  Unstable repetitive operation of RKA(C1—detected waveform of output microwave,C2—radio waveform of output microwave)

    图  2  电子束经过一个输入腔和一个中间腔后的束流调制

    Figure  2.  Beam modulation results with one input cavity and one idler cavity

    图  3  RKA优化后的输出微波相关波形

    Figure  3.  Output microwave relative waveforms of RKA after optimization

    图  4  纵向引导磁场改进前后的磁场分布

    Figure  4.  Longitudinal guiding magnetic field profiles before and after optimization of the front coils

    图  5  强流长脉冲阴极及电子束波形

    Figure  5.  Intense long pulse cathode and its waveform of electron beams

    图  6  电子束经过输入腔和中间腔后的调制束流波形

    Figure  6.  Modulated current waveform of IREBs drifting through input and idler cavities(C2—modulated current waveform with filter,C3—modulated current waveform without filter)

    图  7  S波段长脉冲RKA实验结构原理图

    Figure  7.  Experimental diagram of S-band long pulse RKA

    图  8  不同重复频率运行时RKA输出微波波形

    Figure  8.  Output microwave waveforms of S-band 3-cavity RKA at different repetitive operation(C2—Radio microwave waveform in air of angle 0°,C4—detected microwave waveform in air of angle 10°,F4—phase standard errors between C2 and input microwave)

    表  1  大尺寸和小尺寸漂移管的S波段RKA主要参数的对比

    Table  1.   Main parameters comparison of S-band RKA for the big and the small radius(Rw)of drifting tube

    Rw/cmISCL/kA3Bb/TR/Q)/ΩQLCiQLCo
    input cavityidler cavityoutput cavity
    3.0620.6991634112922
    2.4490.801264523209.4
    下载: 导出CSV
  • [1] Barker R J, Schamiloglu E. High-power microwave sources and technologies [M]. New York: IEEE Press, 2001.
    [2] Benford J, Swegle J A, Schamiloglu E. High power microwaves [M]. 3rd ed. Artech House: CRC Press, 2016.
    [3] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007.

    Zhou Chuanming, Liu guozhi, Liu yonggui, et al. High-power microwave source[M]. Beijing: Atomic Energy Press, 2007
    [4] Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of IREBs into rf waves[J]. Phys Rev Lett, 1995, 75: 1214-1217. doi: 10.1103/PhysRevLett.75.1214
    [5] Fazio M V, Haynes W B, Carlsten B E, et al. A 500 MW, 1 μs pulse length, high current relativistic klystron[J]. IEEE Trans Plasma Sci, 1994, 22(3): 740-749.
    [6] Levine J S, Harteneck B D. Repetitively pulsed relativistic klystron amplifier[J]. Appl Phys Lett, 1994, 65(17): 2133-2135. doi: 10.1063/1.112813
    [7] Huang Hua, Feng Dichao, Luo Guangyao, et al. Repetitive operation of an S-band, 1 GW relativistic klystron amplifier[J]. IEEE Trans Plasma Sci, 2007, 35(3): 384-387.
    [8] Wang Pingshan, Lei Fangyan, Huang Hua, et al. Generation of intense microwaves from a two-cavity image charge focusing relativistic klystron amplifier[J]. Phys Rev Lett, 1998, 80(20): 4594-4597. doi: 10.1103/PhysRevLett.80.4594
    [9] Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multi-beam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2019, 66(1): 722-728. doi: 10.1109/TED.2018.2879193
    [10] Qi Zumin, Zhang Jun, Zhang Qiang, et al. Design and experimental demonstration of a long-pulse, X-band triaxial klystron amplifier with an asymmetric input cavity[J]. IEEE Electron Device Lett, 2016, 37(6): 782-784.
    [11] Xiao Renzhen, Chen Changhua, Deng Yuqun, et al. A high-gain X-band overmoded relativistic klystron[J]. IEEE Trans Electron Devices, 2018, 65(1): 263-269. doi: 10.1109/TED.2017.2771946
    [12] Wu Yang, Xu Zhou, Jin Xiao, et al. Suppression of higher mode excitation in a high gain relativistic klystron amplifier[J]. Phys Plasmas, 2012, 19: 023102. doi: 10.1063/1.3680622
    [13] Li Shifeng, Duan Zhaoyun, Huang Hua, et al. Extended interaction oversized coaxial relativistic klystron amplifier with gigawatt-level output at Ka band[J]. Phys Plasmas, 2018, 25: 043116. doi: 10.1063/1.5006417
    [14] Friedman M, Serlin V, Krall J, et al. Relativistic klystron amplifier I: High power operation[C]//Proc of SPIE. 1991, 1407: 2-7.
    [15] 黄华, 罗雄, 雷禄容, 等. 相对论速调官放大器杂频振荡的分析与抑制[J]. 电子学报, 2010, 38(7):1-7. (Huang Hua, Luo Xiong, Lei Lurong, et al. Analysis and suppress of multi-frequency oscillation on long pulse relativistic klystron amplifiers[J]. Acta Electronica Sinica, 2010, 38(7): 1-7
    [16] Zhang Zehai. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier[J]. Review of Scientific Instruments, 2015, 86: 034707. doi: 10.1063/1.4914832
    [17] 陈昭福, 黄华, 许州, 等. S波段长脉冲RKA脉冲缩短的抑制[J]. 物理学报, 2014, 63:238402. (Chen Zhaofu, Huang Hua, Xu Zhou, et al. Suppress of pulse shortening on S-band long pulse RKA[J]. Acta Physica Sinica, 2014, 63: 238402
    [18] Huang Hua, Chen Zhaofu, Li Shifeng, et al. Investigation on pulse shortening of S-band, long pulse, four cavities high power relativistic klystron amplifier[J]. Phys Plasmas, 2019, 26: 033107. doi: 10.1063/1.5086734
    [19] Calstern B E, Faehl R J, Fazio M V, et al. Intense space-charge beam physics relativistic klystron amplifier[J]. IEEE Trans Plasma Sci, 1994, 22(5): 719-729. doi: 10.1109/27.338288
    [20] 黄华. S波段长脉冲RKA的理论与实验研究[D]. 北京: 中国工程物理研究院研究生部, 2006.

    Huang Hua. Theory and experimental investigation on S band long pulse RKA [D]. Beijing: Graduate School, China Academy Of Engineering Physics, 2006
    [21] Friedman M, Krall J, Lau Y Y, et al. Externally modulation of IREBs[J]. J Appl Phys, 1988, 55(26): 3353-3379.
    [22] Xia Lihong, Huang Boyun, Zhang Fuqin, et al. Effect of heat treatment on cracking and strength of carbon/carbon composites with smooth laminar pyrocarbon matrix[J]. Materials and Design, 2016, 107: 33-40. doi: 10.1016/j.matdes.2016.06.017
    [23] 张福勤, 夏莉红, 王欣欣, 等. 改进晶须碳/碳复合材料的一种制作方法. ZL201410817939.7[P]. 2014-10-16.

    Zhang Fuqin, Xia Lihong, Wang Xinxin, et al. A kind of manufacturing method of C/C composite material by modified crystal beard: ZL201410817939.7 [P]. 2014-10-16
    [24] 王淦平, 张福勤, 黄华, 等. 碳碳复合阴极在相对论速调管放大器中的应用[J]. 强激光与粒子束, 2016, 28:053005. (Wang Ganping, Zhang Fuqin, Huang Hua, et al. Application of carbon/carbon composite cathode in RKA[J]. High Power Laser and Particle Beams, 2016, 28: 053005 doi: 10.11884/HPLPB201628.053005
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  345
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 修回日期:  2020-08-18
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回