留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段高功率高增益多注相对论速调管放大器设计

刘振帮 黄华 金晓 李士锋 王腾钫

刘振帮, 黄华, 金晓, 等. X波段高功率高增益多注相对论速调管放大器设计[J]. 强激光与粒子束, 2020, 32: 103004. doi: 10.11884/HPLPB202032.200188
引用本文: 刘振帮, 黄华, 金晓, 等. X波段高功率高增益多注相对论速调管放大器设计[J]. 强激光与粒子束, 2020, 32: 103004. doi: 10.11884/HPLPB202032.200188
Liu Zhenbang, Huang Hua, Jin Xiao, et al. Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103004. doi: 10.11884/HPLPB202032.200188
Citation: Liu Zhenbang, Huang Hua, Jin Xiao, et al. Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103004. doi: 10.11884/HPLPB202032.200188

X波段高功率高增益多注相对论速调管放大器设计

doi: 10.11884/HPLPB202032.200188
基金项目: 高功率微波技术重点实验室基金项目(6142605180203,JCKYS2018212035,6142605190201)
详细信息
    作者简介:

    刘振帮(1986—),男,博士,副研究员,主要从事高功率微波技术研究;liu9559@yeah.net

  • 中图分类号: TN62

Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier

  • 摘要: 针对器件工程应用中的高功率高增益需求,设计了工作在X波段的高功率高增益多注相对论速调管放大器,建立了带输入、输出波导结构的三维整管模型。设计双边对称耦合孔输入腔结构,降低了输入波导对输入腔间隙电场均匀性的影响以抑制非均匀干扰模式;设计采用多腔多间隙群聚结构,降低了输入微波功率的需求,提高了器件放大增益;并且分析设计了多间隙扩展互作用微波提取结构,提高了器件的功率转换效率以及降低输出结构表面电场强度。通过优化设计,粒子模拟仿真实现X波段多注相对论速调管放大器输出微波功率达到3.2 GW,器件放大增益约为60 dB,功率转换效率约为40%。器件验证实验在电子束电压550 kV,电流5.1 kA的情况下,输出功率为0.99 GW,放大增益约为53 dB,转换效率约为35%。
  • 图  1  多注RKA的y-z剖面图和漂移管x-y剖面及电子束轨迹

    Figure  1.  The y-z section plane and x-y section plane of RKA and the trajectories of the particles

    图  2  输入腔耦合结构的改进设计

    Figure  2.  Structure of the input cavity with symmetric coupling holes

    图  3  输入腔输入微波的吸收情况

    Figure  3.  Waveform of the injected microwave driftting through input port

    图  4  2π模场三间隙、四间隙和五间隙的电子负载电导GeN1/G0θ0的变化

    Figure  4.  GeN1/G0 of the multiple-cavity resonator vs θ0 for different cavities

    图  5  中间腔II后调制束流的射频波形

    Figure  5.  Waveform of modulated current behind the middle cavity II

    图  6  π模场三间隙、四间隙和五间隙的电子负载电导GeN2/G0θ0的变化

    Figure  6.  GeN2/G0 of the multiple-cavity resonator vs θ0 for different cavities

    图  7  输出微波波形

    Figure  7.  Waveform of the output microwave

    图  8  电子束功率随传输距离的变化

    Figure  8.  Electron beam power versus axial position z

    图  9  器件增益特性曲线

    Figure  9.  Output power versus input power of the multiple-beam RKA

    图  10  器件输出功率随电子束功率的变化

    Figure  10.  Output power versus electron beam power of the multiple-beam RKA

    图  11  多注RKA实验系统结构示意图

    Figure  11.  Structure diagram of X band multi-beam RKA

    图  12  电子束电压、电流与末端法拉第筒电流波形

    Figure  12.  Voltage,current,and Faraday-cup current of the electron beam

    图  13  输出微波检波波形、射频波形和频谱

    Figure  13.  Waveform and spectrum of the output microwave

  • [1] Serlin V, Frideman M. Development and optimization of the relativistic klystron amplifier[J]. IEEE Trans Plasma Science, 1994, 22(5): 692-700. doi: 10.1109/27.338284
    [2] 江伟华, 张驰. 高功率微波[M]. 北京: 国防工业出版社, 2009: 293-335

    Jiang Weihua, Zhang Chi. High power microwave[M]. Beijing: National Defence Industry Press, 2009: 293-335
    [3] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 北京: 清华大学出版社, 2005: 57-63

    Barker R J, Schamiloglu E. High power microwave sources and technologies[M]. Beijing: Tsinghua University Press, 2005: 57-63
    [4] 黄华, 吴洋, 刘振帮, 袁欢, 等. 锁频锁相的高功率微波器件技术研究[J]. 物理学报, 2018, 67:088402. (Huang Hua, Wu Yang, Liu Zhenbang, Yuan Huan, et al. Review on high power microwave device with locked frequency and phase[J]. Acta Physica Sinica, 2018, 67: 088402
    [5] 李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:073001. (Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001 doi: 10.11884/HPLPB202032.200095
    [6] Li Renjie, Ruan Cunjun, Zhang Huafeng. Design and optimization of G-band extended interaction klystron with high output power[J]. Physics of Plasmas, 2018, 25: 033107. doi: 10.1063/1.5012018
    [7] Habermann T, Balkcum A, Begum R, et al. High-power high-efficiency L-band multiple-beam klystron development at CPI[J]. IEEE Trans Plasma Science, 2010, 38: 1264-1269. doi: 10.1109/TPS.2010.2042972
    [8] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社. 2010: 57-60.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010: 57-60
    [9] 丁耀根. 多注速调管技术新进展[J]. 真空电子技术, 2002, 5:8-14. (Ding Yaogen. The technology development of the multi beam klystron[J]. Vacuum Electronics, 2002, 5: 8-14
    [10] 张瑞, 王勇. 高峰值功率多注速调管的发展现状[J]. 真空电子技术, 2007, 3:25-30. (Zhang Rui, Wang Yong. Development of high peak power multi-beam klystron[J]. Vacuum Electronics, 2007, 3: 25-30
    [11] Abubakirov E B, Denisenko A N, Fuks M I, et al. An X-band gigawatt amplifier[J]. IEEE Trans Plasma Science, 2002, 30: 1041-1052. doi: 10.1109/TPS.2002.801601
    [12] Ding Yaogen, Shen Bin, Cao Jing, et al. Research progress on X-band multibeam klystron[J]. IEEE Trans Electron Devices, 2009, 56: 870-876. doi: 10.1109/TED.2009.2015630
    [13] Qi Zumin, Zhang Jun, Xie Yongjie, et al. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition[J]. Physics of Plasmas, 2016, 23: 123103. doi: 10.1063/1.4969079
    [14] Zhang Wei, Ju Jinchuan, Zhang Jun, et al. Theoretical research on TEM mode feedback for compact design of an X-band triaxial klystron amplifier[J]. Physics of Plasmas, 2019, 26: 053102. doi: 10.1063/1.5088713
    [15] Friedman M, Pasour J, Smithe D. Modulating electron beams for an X band relativistic klystron amplifier[J]. Applied Physics Letters, 1997, 71: 3724-3726. doi: 10.1063/1.120494
    [16] 刘振帮, 黄华, 金晓, 等. 长脉冲X波段多注相对论速调管放大器的初步实验研究[J]. 物理学报, 2015, 64:018401. (Liu Zhenbang, Huang Hua, Jin Xiao, et al. Experimental study on a long pulse X-band coaxial multi-beam[J]. Acta Physica Sinica, 2015, 64: 018401
    [17] Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [18] 何琥, 刘振帮, 黄华. 多注RKA束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2019, 31:013001. (He Hu, Liu Zhenbang, Huang Hua. Comparison between self-consistent nonlinear theory of current modulation and three-dimensional particle-in-cell simulation in multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 013001 doi: 10.11884/HPLPB201931.180095
    [19] 刘振帮, 赵欲聪, 黄华, 等. Ka波段带状注相对论扩展互作用速调管放大器的分析与设计[J]. 物理学报, 2015, 64:108404. (Liu Zhenbang, Zhao Yucong, Huang Hua, et al. Analysis and design of a Ka-band sheet beam relativistic extended interaction klystron amplifier[J]. Acta Physica Sinica, 2015, 64: 108404
    [20] 张点. 过模O型Cerenkov高功率微波产生器件相关理论和关键问题研究[D]. 长沙: 国防科学技术大学研究生院, 2014.

    Zhang Dian. Investigation on related theory and key problems of overmoded O-type Cerenkov high power microwave generators[D]. Changsha: Graduate School of National University of Defense Technology, 2014
    [21] 范植开, 刘庆想, 刘锡三, 等. 多腔谐振腔中渡越时间效应的线性理论[J]. 强激光与粒子束, 1999, 11:633-638. (Fan Zhikai, Liu Qingxiang, Liu Xisan, et al. The linear theory of the transit-time effect in a multiple-cavity resonator[J]. High Power Laser and Particle Beams, 1999, 11: 633-638
    [22] 刘振帮, 金晓, 黄华, 等. 强流多注相对论速调管中电子束特性的初步研究[J]. 物理学报, 2012, 61:248401. (Liu Zhenbang, Jin Xiao, Huang Hua, et al. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron[J]. Acta Physica Sinica, 2012, 61: 248401
  • 加载中
图(13)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  96
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-07
  • 修回日期:  2020-09-09
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回