留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高次模式同轴多间隙腔激励特性研究

张煦 王勇 张瑞

张煦, 王勇, 张瑞. 高次模式同轴多间隙腔激励特性研究[J]. 强激光与粒子束, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193
引用本文: 张煦, 王勇, 张瑞. 高次模式同轴多间隙腔激励特性研究[J]. 强激光与粒子束, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193
Zhang Xu, Wang Yong, Zhang Rui. Study on excitation characteristics of high-order mode coaxial multi-gap cavity[J]. High Power Laser and Particle Beams, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193
Citation: Zhang Xu, Wang Yong, Zhang Rui. Study on excitation characteristics of high-order mode coaxial multi-gap cavity[J]. High Power Laser and Particle Beams, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193

高次模式同轴多间隙腔激励特性研究

doi: 10.11884/HPLPB202032.200193
基金项目: 国家重点研发计划项目(Y8BD130284)
详细信息
    作者简介:

    张 煦(1994—),男,博士研究生,主要方向为新型大功率微波器件;zhangxu941125@sina.com

    王 勇(1964—),男,研究员,主要方向为大功率微波器件和计算电磁学;wangyong3845@sina.com

    张 瑞(1979—),男,副研究员,主要方向为大功率微波器件及新型微波电真空器件;ruizhang@mail.ie.ac.cn

  • 中图分类号: TN122

Study on excitation characteristics of high-order mode coaxial multi-gap cavity

  • 摘要: 提出了一种工作在TM51-2π模式的Ka波段同轴多间隙谐振腔,使用CST本征模求解器研究了此结构的电场分布特性,并分析了基于外侧全通的耦合方式下该结构的冷腔模式特性。在此基础上,通过结合空间电荷波理论和CST三维粒子仿真分析,研究了在多电子注激励下同轴多间隙腔高次模式的起振特性,并分析了此种结构的模式稳定性与注-波互作用特性。研究结果表明:对于工作在Ka波段的TM51-2π模式同轴多间隙腔,采取结构外侧全耦合的方式具有较高的模式稳定性;在此结构中,多电子注不仅会均匀激励起工作模式,也可能非均匀激励起竞争模式;不同于工作在基模的扩展互作用速调管,此种结构的速调管电场极值是分别建立的,因此激励电子注可放置在不同相位的电场极值处;在保持电子注电压、总电流不变的情况下,采取更多电子注的激励方式,需要更小的聚焦磁场。
  • 图  1  工作模式及其相邻模式的轴向电场分布

    Figure  1.  Axial electric field distribution of the operating mode and its adjacent modes

    图  2  工作在TM51-2π模式的同轴三间隙腔轴向电场分布(a)三维电场分布(b)x-z横截面上的二维电场分布

    Figure  2.  Axial electric field distribution of the TM51-2π mode with 3-gap coaxial structure including (a) 3-D model (b) 2-D model at x-z cross-section

    图  3  沿电子注通道的归一化轴向电场Ez分布

    Figure  3.  Normalized Ez-field distribution along the beam tunnel

    图  4  TM51-2π模归一化电子电导Ge/G0随电子注电压V0变化曲线

    Figure  4.  Normalized Ge/G0 curves with beam voltage V0

    图  5  由五注激励的非工作模式轴向电场分布

    Figure  5.  Axial electric field distribution of the non-working modes excited by 5 beams

    图  6  不同电子注电流激励下工作模式及竞争模式的整体品质因数QL

    Figure  6.  Total quality factor QL of operating mode and competition modes under different beam current excitation

    图  7  同轴多间隙腔TM51-2π两种激励方式

    Figure  7.  Two excitation methods of TM51-2π mode in coaxial multi-gap cavity

    图  8  两种激励方式激励五间隙谐振腔电压信号及频谱

    Figure  8.  Voltage signals and frequency spectra of the five-gap cavity driven by two methods

    图  9  y-z截面上两种激励方式下的电子注轨迹

    Figure  9.  y-z cross-section of the beam trajectories with two excitation methods

    图  10  不同激励方式下间隙电压随着总激励电流的变化曲线

    Figure  10.  Gap voltage changes with total beam current under different excitation methods

    表  1  工作模式及其相邻模式的频率、品质因数和带宽

    Table  1.   Frequencies, quality factors and instantaneous bandwidths of the operating mode and its adjacent modes

    modef/GHzQbandwidth/GHz
    TM31-2π28.6216990.017
    TM31-1/3π30.4616750.018
    TM41-2π31.5818500.017
    TM41-1/3π33.2318080.018
    TM31-2/3π35.0419440.018
    TM51-2π35.3020280.017
    TM51-1/3π36.7419630.019
    TM41-2/3π37.5220220.019
    TM61-2π38.7221420.018
    下载: 导出CSV
  • [1] Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
    [2] Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [3] Shin YM, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2011, 58(1): 251-257. doi: 10.1109/TED.2010.2082544
    [4] Nguyen K, Ludeking L, Pasour J, et al. 1.4: Design of a high-gain wideband high-power 220-GHz multiple-beam serpentine TWT[C]// IEEE International Vacuum Electronics Conference. 2010: 23–24.
    [5] Korolev A N, Zaitsev S A, Golenitskij I I, et al. Traditional and novel vacuum electron devices[J]. IEEE Trans Electron Devices, 2011, 48(12): 2929-2935. doi: 10.1109/16.974731
    [6] 丁耀根, 阮存军, 沈斌, 等. X波段同轴腔多注速调管的研究[J]. 电子学报, 2006, 34(s1):2337-2341. (Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial cavity multi beam klystron[J]. Acta Electronica Sinica, 2006, 34(s1): 2337-2341
    [7] Kowalski E J, Shapiro A, Temkin R J. An overmoded W-band coupled-cavity TWT[J]. IEEE Trans Electron Devices, 2015, 62(5): 1609-1616. doi: 10.1109/TED.2015.2407865
    [8] Ding Yaogen, Shen Bin, Cao Jing, et al. Research progress on X-band multi-beam klystron[C]//IEEE International Vacuum Electronics Conference. 2008: 421-422.
    [9] 董玉和. 微波圆柱和同轴腔高阶横磁模式及输出耦合[D]. 北京: 中国科学院电子学研究所, 2006: 21-41.

    Dong Yuhe. Research on higher order transverse magnetic mode of microwave cylindrical coaxial cavity and its out-coupling[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2006: 21-41
    [10] Lü Suye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3047. doi: 10.1109/TED.2015.2435031
    [11] 张克潜, 李德杰. 微波与光电子学中的电磁理论[M]. 2版. 北京: 电子工业出版社, 2001.

    Zhang Keqian, Li Dejie. Electromagnetic theory for microwave and optoelectronics. 2nd ed. Beijing: Publishing House of Electronics Industry, 2001
    [12] 肖宇杰, 林福民. 0.3 THz TM10,1,0模同轴耦合腔链[J]. 强激光与粒子束, 2018, 30:103101. (Xiao Yujie, Lin Fumin. 0.3 THz TM10,1,0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101 doi: 10.11884/HPLPB201830.180153
    [13] Wang Dongyang, Wang Guangqiang, Wang Jianguo, et al. A high-order mode extended interaction klystron at 0.34 THz[J]. Physics of Plasmas, 2017, 24: 023106. doi: 10.1063/1.4975649
    [14] Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IEEE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
    [15] Luo Jirun, Cui Jian, Zhu Min, et al. Stability analysis of 2π mode operation in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain[C]//IEEE International Vacuum Electronics Conference. 2012: 281-282.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  264
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-09-15
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回