留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

G波段500 W带状注扩展互作用速调管设计研究

张长青 冯进军 蔡军 潘攀

张长青, 冯进军, 蔡军, 等. G波段500 W带状注扩展互作用速调管设计研究[J]. 强激光与粒子束, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195
引用本文: 张长青, 冯进军, 蔡军, 等. G波段500 W带状注扩展互作用速调管设计研究[J]. 强激光与粒子束, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195
Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195
Citation: Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195

G波段500 W带状注扩展互作用速调管设计研究

doi: 10.11884/HPLPB202032.200195
基金项目: 国家自然科学基金重点项目(61831001)
详细信息
    作者简介:

    张长青(1982—),男,博士,工程师,主要研究方向有太赫兹真空电子器件;c.q.zhang@163.com

    通讯作者:

    冯进军(1966—),男,博士,研究员,主要研究方向有微真空电子学、大功率微波真空电子器件技术;fengjinjun@tsinghua.org.cn

  • 中图分类号: TN101

Design of G-band 500 W sheet beam extended-interaction klystron

  • 摘要: 针对太赫兹频段实现高功率面临物理机制上的难题,设计了一个G波段带状注速调管,展示了基于非相对论带状电子注和扩展互作用技术所能达到的功率水平以及影响性能的物理因素。文中设计基于电压24.5 kV、电流0.6 A,1 mm×0.15 mm的椭圆电子注,以及与之相匹配的互作用系统,即横向过尺寸哑铃型多间隙谐振腔,可以实现高功率和高增益。三维PIC仿真结果显示,在考虑实际腔体损耗的情况下,能够获得超过500 W的功率,电子效率和增益分别达到3.65%和38.2 dB。研究发现,输出功率和效率的提升很大程度上受到多间隙腔模式稳定性以及电路欧姆损耗的制约;输出腔的欧姆损耗对输出功率影响尤为显著,工程设计需要特别考虑。本文的研究为高频段带状注扩展互作用器件的研发打下了良好的基础。
  • 图  1  多间隙哑铃型谐振腔示意图

    Figure  1.  Schematic diagram of multi-gap dumbbell resonator

    图  2  横向模式频率随谐振腔中间段宽度w的变化

    Figure  2.  Variation of transverse mode frequency with the width w

    图  3  多间隙腔的轴向模式分布

    Figure  3.  Axial modes of the multi-gap cavity

    图  4  2π和π/(N−1)模的模式间隔随间隙数目的变化

    Figure  4.  Mode separation of the 2π and π/(N−1)as a function of the gap number

    图  5  七间隙腔轴向模式的归一化电场分布

    Figure  5.  Normalized electric field distribution of the aixal modes for seven-gap cavity

    图  6  电场Ez沿横向的分布均匀性

    Figure  6.  Distribution uniformity of electric field Ez along transverse direction

    图  7  高斯波形的发射电流

    Figure  7.  Emission current with Gaussian pulse waveform

    图  8  输出腔电路模型以及高斯电子注团的群聚特性

    Figure  8.  Circuit model of output cavity and bunching characteristics of Gaussian electron beam clusters

    图  9  输出腔端口信号随时间的变化及其FFT频谱

    Figure  9.  Output cavity port signal as a function of time and its FFT spectrum

    图  10  输出腔的输出功率随腔体损耗的变化

    Figure  10.  Variation of output power with output cavity loss

    图  11  输出腔的3 dB带宽图

    Figure  11.  3 dB bandwidth of output cavity

    图  12  输出功率随输入功率的变化曲线

    Figure  12.  Output power versus input power

    图  13  高频互作用系统仿真模型及电子注群聚状态

    Figure  13.  Simulation model of high frequency interaction system and electron beam bunching state

    图  14  带状注电子注在均匀聚焦磁场以及RF场调制下的传输特性

    Figure  14.  Transmission characteristics of the sheet beam under a uniform focusing magnetic field (Bz) along with RF modulation

    图  15  输入功率为80 mW下,输出功率和增益随频率的变化

    Figure  15.  Output power and gain as a function of frequency with an input power of 80 mW

    表  1  七间隙腔冷腔特性参数计算结果

    Table  1.   Calculated characteristic parameters of the seven-gap cavity

    modef0/GHz(R/Q)/ΩMQ0
    220.7949296.11/20.2911455
    π/6221.9730236.44/20.0382465
    2π/6226.7687249.426/20.0029515
    下载: 导出CSV
  • [1] Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
    [2] Chernin D, Burke A, Chernyavskiy I, et al. Extended Interaction Klystrons for terahertz power amplifiers[C]// IEEE International Vacuum Electronics Conference. 2010: 217-218.
    [3] Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1935. doi: 10.1109/TED.2014.2302741
    [4] Roitman A, Horoyski P, Dobbs R, et al. Space-borne EIK technology[C]// IEEE International Vacuum Electronics Conference. 2014.
    [5] Steer B, Roitman A, Horoyski P, et al. Millimeter-wave Extended Interaction Klystrons for high power ground, airborne and space radars[C]//IEEE Microwave Conference. 2011.
    [6] 丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8):1989-1995. (Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. Application of high power microwave vacuum electron devices[J]. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995 doi: 10.3788/HPLPB20112308.1989
    [7] Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band Extended Interaction Klystron[C]//IEEE International Vacuum Electronics Conference. 2007.
    [8] Steer B, Horoyski P, Roitman A, et al. A 263 GHz 10 Watt pulsed Extended Interaction Klystron Amplifier[C]//IEEE International Conference on Infrared, Millimeter, & Terahertz Waves. 2013.
    [9] Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [10] Nguyen Khanh T, Pasour J, Wright E L, et al. Design of a G-band sheet-beam Extended-Interaction Klystron[C]//IEEE International Vacuum Electronics Conference. 2009.
    [11] Zhao Jinfeng, Gamzina D, Li Na, et al. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun[J]. IEEE Trans Electron Devices, 2012, 59(6): 1792-1798. doi: 10.1109/TED.2012.2190294
    [12] Zhao Ding, Lu Xi, Liang Yuan, et al. Researches on an X-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2014, 61(1): 151-158. doi: 10.1109/TED.2013.2291781
    [13] Yu D, Verdes R P, Wilson P. Sheet-beam klystron RF cavities[C]//Particle Accelerator Conference IEEE. 1993, 4: 2681–2683.
    [14] LüSuye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3048. doi: 10.1109/TED.2015.2435031
    [15] LüSuye, Zhang Changqing, Yu Ge, et al. Analysis of the field shape and mode competition for the higher order modes in the oversized multigap resonant cavity with coplanar beams[J]. IEEE Trans Plasma Science, 2019, 47(4): 1742-1748. doi: 10.1109/TPS.2019.2902350
    [16] Main W, Carmel Y, Ogura K, et al. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams[J]. IEEE Trans Plasma Science, 1994, 22(5): 566-577. doi: 10.1109/27.338269
    [17] Shin Y M, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2010, 58(1): 251-258. doi: 10.1109/TED.2010.2082544
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1507
  • HTML全文浏览量:  312
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-10
  • 修回日期:  2020-08-25
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回