留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光聚变驱动器的光束相干性及其控制:回顾与展望

魏晓峰 李平

魏晓峰, 李平. 激光聚变驱动器的光束相干性及其控制:回顾与展望[J]. 强激光与粒子束, 2020, 32: 121007. doi: 10.11884/HPLPB202032.200203
引用本文: 魏晓峰, 李平. 激光聚变驱动器的光束相干性及其控制:回顾与展望[J]. 强激光与粒子束, 2020, 32: 121007. doi: 10.11884/HPLPB202032.200203
Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32: 121007. doi: 10.11884/HPLPB202032.200203
Citation: Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32: 121007. doi: 10.11884/HPLPB202032.200203

激光聚变驱动器的光束相干性及其控制:回顾与展望

doi: 10.11884/HPLPB202032.200203
基金项目: 中国工程物理研究院院长基金项目(YZ1602)
详细信息
    作者简介:

    魏晓峰(1960—),男,研究员,主要从事高功率激光技术研究;xfwei@caep.cn

  • 中图分类号: O532

Beam coherence and control of laser fusion driver: Retrospect and prospect

  • 摘要: 高功率强激光与物质相互作用蕴藏着丰富的非线性效应,激光聚变驱动器的光束具有高度相干性,它在光束传输过程中极大地凸显了这种效应,并不可避免地制约着激光功率的提升和激光能量的有效利用。回顾激光聚变驱动器的发展史,在提升激光输出能力的主线外,还存在一条与光束相干性做斗争的暗线贯穿其中。以激光与物质相互作用为牵引,从高功率强激光传输中非线性效应抑制和激光等离子体相互作用的抑制两方面回顾了激光聚变驱动器光束相干性的控制现状,并针对潜在需求,展望了未来高功率激光发展的创新技术。
  • 图  1  TSBS效应造成的熔石英元件的损伤裂纹

    Figure  1.  Damage and crack of fused silica optics caused by transverse stimulated Raman scattering (TSBS) effect

    图  2  强激光SRRS效应形成的典型散射光谱

    Figure  2.  Typical scattering spectra by stimulated rotational Raman scattering (SRRS) effect of intense laser

    图  3  TSRS效应造成的三倍频晶体元件双肺模式的体损伤

    Figure  3.  Damage of crystal optics in dual lung mode caused by TSRS effect

    图  4  自聚焦效应造成打靶透镜元件成丝损伤

    Figure  4.  Filament damage of lens caused by self-focusing effect

    图  5  CPP面形设计及对应的焦斑分布

    Figure  5.  Schematic diagram of CPP technology and its corresponding focal plane irradiance

    图  6  基于光束近场和远场全域对应关系的SSD技术

    Figure  6.  Schematic diagram of far field and near field global correspondence based on SSD technology

    图  7  基于偏振优化控制实现具有混合偏振的丝斑分布示意图

    Figure  7.  Schematic diagram of mixed polarization state in the far field based on polarization optimization control

  • [1] Basov N G, Krohkin O H. The conditions of plasma heating by optical generation of radiation[C]//Proceeding of the 3rd International Congress on Quantum Electronics. 1964: 1373.
    [2] 王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 中国激光, 1987, 14(11):641-645. (Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 14(11): 641-645 doi: 10.3321/j.issn:0258-7025.1987.11.001
    [3] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142.
    [4] Storm E, Lindl, J D, Campbell E M, et al. Progress in laboratory high gain ICF (Inertial Confinement Fusion): Prospects for the future[C]//InternationaL Seminar on Nuclear War. 1988: 1-30.
    [5] 魏晓峰, 郑万国, 张小民. 中国高功率固体激光技术发展中的两次突破[J]. 物理, 2018, 47(2):73-83. (Wei Xiaofeng, Zheng Wanguo, Zhang Xiaomin. Two breakthroughs in the development of high power solid-state laser technology in China[J]. Physics, 2018, 47(2): 73-83 doi: 10.7693/wl20180202
    [6] Hunt J T, Speck D R. Present and future performance of the Nova laser system[J]. Optical Engineering, 1989, 28(4): 461.
    [7] Manes K R. Review of upconverted Nd-Glass laser plasma experiments at Lawrence Livermore National Laboratory[J]. AIP Conference Proceedings, 1982, 90(1): 196.
    [8] Kidder R E. Inertial Confinement Nuclear Fusion: A historical approach by its pioneers[M]. London : Scientific Publishers, 2007.
    [9] Moses E I, Wuest C R. The National Ignition Facility: Status and plans for laser fusion and high-energy-density experimental studies[J]. Fusion Science and Technology, 2003, 43(3): 420-427.
    [10] André M L. The French Megajoule Laser Project (LMJ)[J]. Fusion Engineering & Design, 1999, 44(1/4): 43-49.
    [11] Belkov S A. Numerical modeling of the optical system of UFL-2M laser facility[C]//16th International Conference Laser Optics. 2014.
    [12] Norreys P A, Farhat N B, Sentoku Y, et al. Intense laser-plasma interactions: New frontiers in high energy density physics[J]. Physics of Plasmas, 2009, 16: 041002.
    [13] Clery D. Ignition facility misses goal, ponders new course[J]. Science, 2012, 337(15): 1444-1445.
    [14] Bliss E, Hunt J, Renard P, et al. Effects of nonlinear propagation on laser focusing properties[J]. IEEE Journal of Quantum Electronics, 1976, 12(7): 402-406.
    [15] Simmons W, Hunt J, Warren W. Light propagation through large laser systems[J]. IEEE Journal of Quantum Electronics, 1981, 17(9): 1727-1744.
    [16] Gross H. Numerical propagation of partially coherent laser beams through optical systems[J]. Optics & Laser Technology, 1997, 29(5): 257-260.
    [17] Sawicki R H.The National Ignition Facility: laser system, beam line design and construction[C]//Proc of SPIE. 2004, 5341: 43.
    [18] Puell H, Scheingraber H, Vidal C R. Saturation of resonant third-harmonic generation in phase-matched systems[J]. Physical Review A, 1980, 22(3): 1165-1178.
    [19] Paisner J A, Boyes J D, Kumpan S A, et al. Conceptual design of the National Ignition Facility[C]//Proc of SPIE. 1995, 2633:2-13.
    [20] 范滇元, 张小民. 激光核聚变与高功率激光: 历史与进展[J]. 物理, 2010, 39(9):589-596. (Fan Dianyuan, Zhang Xiaomin. Laser fusion and high power laser: History and progress[J]. Physics, 2010, 39(9): 589-596
    [21] Shen Y R. The principles of nonlinear optics[M]. New York: John Wiley &Sons, 1984.
    [22] Wang Huan, Ji Xiaoling, Deng, Yu, et al. Theory of the quasi-steady-state self-focusing of partially coherent light pulses in nonlinear media[J]. Optics Letters, 2020, 45: 710-713.
    [23] Wang Huan, Ji Xiaoling, Zhang Hao, et al. Propagation formulae and characteristics of partially coherent laser beams in nonlinear media[J]. Optics Letters, 2019, 44: 743-746.
    [24] Eggleston J M, Kushner M J. Stimulated Brillouin scattering parasitics in large optical windows[J]. Optics Letters, 1987, 12(6): 410-412.
    [25] Henesian M A, Swift C D, Murray J R. Stimulated rotational Raman scattering in nitrogen in long air paths[J]. Optics Letters, 1985, 10(11): 565-571.
    [26] She C Y. Analysis of the stimulated Raman effects in an anisotropic crystal KDP[J]. IEEE Journal of Quantum Electronics, 1967, 3(2): 73-78.
    [27] Murray J R, Smith J R, Ehrlich R B, et al. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components[J]. Journal of the Optical Society of America B, 1989, 6(12): 2402-2411.
    [28] Valley G C. A review of stimulated Brillouin scattering excited with a broad-band pump laser[J]. IEEE Journal of Quantum Electronics, 1986, 22(5): 704-712.
    [29] Ziming G, Zhiwei L, Dianyang L. The research and development of the stimulated Brillouin scattering in the optical component[J]. Laser Technology, 2002, 26(5): 375-378.
    [30] Faris G W, Jusinski L E, Hickman A P. High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals[J]. Journal of the Optical Society of America B, 1993, 10(4): 587-599.
    [31] Dixit S N. Numerical modeling of suppression of stimulated Brillouin scattering due to finite laser bandwidth[C]// Proc of SPIE. 1992, 1626: 254-265.
    [32] Sarah M, Luc B, Stefan S. Controlling the stimulated Brillouin scattering of self-focusing nanosecond laser pulses in silica glasses[J]. Physical Review A, 2011, 83: 063829.
    [33] Ge Ziming, Lü Zhiwei, Cai Junwei, et al. The damage of the optical components induced by the stimulated Brillouin scattering[J]. Chinese Physics, 2006, 15(10): 2343-2346.
    [34] Thompson C E, Browning D F, Padilla E H, et al. “Fail-safe” system for suppressing stimulated Brillouin scattering in large optics on the Nova laser[R]. UCRL-JC-107974, 1992.
    [35] Joiner J, Bhartia P K, Cebula R P. Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements[J]. Applied Optics, 1995, 34(21): 4513-4525.
    [36] Henesian M, Swift C D, Murray J R. Summary of stimulated Raman scattering experiments in the Nova air-path and projected Nova and Nova Ⅱ system performance limits[R]. UCRL-TR-23411, 2007.
    [37] Lin Y, Kessler T J, Lawrence G N. Raman scattering in air: four-dimensional analysis[J]. Applied Optics, 1994, 33(21): 4781-4791.
    [38] Thiell G, Graillot H, Joly P, et al. Laser physics studies with Phebus as part of the megajoule laser project[J]. Fusion Engineering & Design, 1999, 44(1/4): 157-162.
    [39] Deng X W, Wang F, Jia H T, et al. Temporal, spectral and spatial characterization of high-energy laser pulse with small bandwidth propagating through long path[J]. Chinese Physics Letters, 2012, 29: 124211.
    [40] Wang J, Zhang X M, Han W, et al. Experimental observation of near-field deterioration induced by stimulated rotational Raman scattering in long air paths[J]. Chinese Physics Letters, 2011, 28: 084211.
    [41] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249.
    [42] Raymer M G, Mostowski J, Carlsten J L. Theory of stimulated Raman scattering with broad-band lasers[J]. Physical Review A, 1979, 19(6): 2304-2316.
    [43] Georges A T. Theory of stimulated Raman scattering in a chaotic incoherent pump field[J]. Optics Communications, 1982, 41(1): 61-66.
    [44] Raymer M G, Mostowski J. Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation[J]. Physical Review A, 1981, 24(4): 1980-1993.
    [45] Barker C E, Sacks R A, Wonterghem B M V, et al. Transverse stimulated Raman scattering in KDP[C]//Proc of SPIE.1995, 2633: 501.
    [46] Demos S G, Raman R N, Negres R A. Estimation of the transverse stimulated Raman scattering gain coefficient in KDP and DKDP at 2-ω, 3-ω, and 4-ω[C]//Proc of SPIE. 2015: 81900S.
    [47] Demos S G, Raman R N, Yang S T, et al. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals[J]. Optics Express, 2011, 19: 21050.
    [48] Novikov V N, Belkov S A, Buiko S A, et al. Transverse SRS in KDP and KD*P crystals[C]//Proc of SPIE. 1999, 3492: 1009-1018.
    [49] Han W, Wang F, Zhou L, et al. Suppression of transverse stimulated Raman scattering with laser-induced damage array in a large-aperture potassium dihydrogen phosphate crystal[J]. Optics Express, 2013, 21(25): 30481-30491.
    [50] Han W, Zhou L D, Li F Q, et al. Laser-induced damage of a large-aperture potassium dihydrogen phosphate crystal due to transverse stimulated Raman scattering[J]. Laser Physics, 2013, 23: 116001.
    [51] Kaminskii A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Reviews, 2007, 1(2): 93-177.
    [52] Fan X, Li S, Huang X, et al. Using polarization control plate to suppress transverse stimulated Raman scattering in large-aperture KDP crystal[J]. Laser and Particle Beams, 2018, 36(4): 1-4.
    [53] Suydam B R. Self-focusing of very powerful laser beams Ⅱ[J]. IEEE Journal of Quantum Electronics, 1974, 10(11): 837-843.
    [54] Marburger J M. Self-focusing theory[J]. Prog Quantum Electron, 1975, 4: 35-110.
    [55] Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett, 1966, 3(12): 307-310.
    [56] Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 1974, 23(11): 628-630.
    [57] Vaseva I A, Fedoruk M P, Rubenchik A M, et al. Light self-focusing in the atmosphere: thin window model[J]. Scientific Reports, 2016, 6(1): 30697.
    [58] Wen Shuangchun, Fan Dianyuan. Filamentation instability of laser beams in nonlocal nonlinear media[J]. Chinese Physics, 2001, 10(11): 1032-1036.
    [59] Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of intense laser beams in the presence of vector effect[J]. Chinese Physics Letters, 2000, 17(10): 731-733.
    [60] Williams W, Renard P A, Manes K R, et al. Modeling of self-focusing experiments by beam propagation codes[J]. UCRL-LR-105821-96-1.
    [61] Coe S E, Afshar-Rad T, Willi O. Experimental observations of thermal whole beam self-focusing[J]. Europhysics Letters, 1990, 13(3): 251-256.
    [62] Beckwitt K, Wise F W, Qian L, et al. Compensation for self-focusing by use of cascade quadratic nonlinearity[J]. Optics Letters, 2001, 26(21): 1696-1698.
    [63] Reintjes J, Carman R L, Shimizu F. Study of self-focusing and self-phase-modulation in the picosecond-time regime[J]. Physical Review A, 1973, 8(3): 1486-1503.
    [64] Feng Zehu, Fu Xiquan, Zhang Lifu, et al. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation[J]. Acta Physica Sinica, 2008, 57(4): 2253-2259.
    [65] 张艳丽, 李小燕, 朱健强. 增益介质中发散光束的小尺度自聚焦[J]. 光学学报, 2009, 29(3):786-793. (Zhang Yanli, Li Xiaoyan, Zhu Jianqiang. Small-scale self-focusing of divergent beams in gain medium[J]. Acta Optica Sinica, 2009, 29(3): 786-793
    [66] Jia H, Xu B, Wang F, et al. Small-scale self-focusing in a tapered optical beam[J]. Applied Optics, 2012, 51(25): 6089-6094.
    [67] 文双春, 范滇元. 非傍轴光束的小尺度自聚焦研究[J]. 物理学报, 2000, 49(3):460-462. (Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of nonparaxial laser beams[J]. Acta Physica Sinica, 2000, 49(3): 460-462 doi: 10.3321/j.issn:1000-3290.2000.03.015
    [68] 顾亚龙, 朱健强. 发散光束小尺度自聚焦特性的研究[J]. 光学学报, 2006, 26(11):1734-1738. (Gu Yalong, Zhu Jianqiang. Small-scale self-focusing of divergent beams[J]. Acta Optica Sinica, 2006, 26(11): 1734-1738 doi: 10.3321/j.issn:0253-2239.2006.11.026
    [69] Parham T G, Azevedo S, Chang J, et al. Large aperture optics performance[R]. LLNL-TR-410955, 2009.
    [70] Tanaka K A, Hashimoto H, Kodama R, et al. Performance comparison of self-focusing with 1053- and 351-nm laser pulses[J]. Physical Review E, 1999, 60(3): 3283-3288.
    [71] Jia H, Zhou L, Wang F. Dark spot downstream from nonlinear hot image[J]. Applied Optics, 2012, 51: 4285-4290.
    [72] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 1993, 32: 5973-5982.
    [73] Wang Y W, Wen S C, Zhang L F, et al. Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss[J]. Appl Opt, 2008, 47(8): 1152-1163.
    [74] Ye Z, Zhao J, Peng T, et al. Evolution of the hot image effect in high-power laser system with cascaded Kerr medium[J]. Optics & Lasers in Engineering, 2009, 47(11): 1199-1204.
    [75] Roth U, Loewenthal F, Tommasini R, et al. Compensation of nonlinear self-focusing in high-power lasers[J]. IEEE Journal of Quantum Electronics, 2000, 36(6): 687-691.
    [76] Hunt J T, Glaze J A, Simmons W W, et al. Suppression of self-focusing through low-pass spatial filtering and relay imaging[J]. Applied Optics, 1978, 17(13): 2053-2057.
    [77] Jokipii J R. Homogeneity requirements for minimizing self-focusing damage by strong electromagnetic waves[J]. Applied Physics Letters, 1973, 23(12): 696-698.
    [78] Williams W, Trenholme J, Orth C, et al. NIF design optimization[R]. UCRL-LR-105821-96-4, 1996.
    [79] Murray J, Sacks R, Auerbach J, et al. Laser requirements and performance[R]. UCRL-LR-105821-97-3, 1996.
    [80] Spaeth M, Henesian M. Simulations of 3ω beam filamentation in the beamlet focus lens and general comments on filamentation theory[R]. LLNL-TR-661757.
    [81] 黄晚晴, 张颖, 孙喜博, 等. 高功率固体激光装置的B积分判据探究[J]. 激光与光电子学进展, 2019, 56:121403. (Huang Wanqing, Zhang Ying, Sun Xibo, et al. B-integral criteria for high power solid-state laser facility[J]. Laser & Optoelectronics Progress, 2019, 56: 121403
    [82] Li D, Zhao J L, Peng T, et al. Theoretical analysis of the image with a local intensity minimum during hot image formation in high-power laser systems[J]. Applied Optics, 2009, 48(32): 6229-6233.
    [83] 周丽丹, 粟敬钦, 李平, 等. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究[J]. 物理学报, 2011, 60:024202. (Zhou Lidan, Su Jingqin, Li Ping, et al. Quantitative relation between "defects" distribution on optics and near-field quality in high power solid-state laser system[J]. Acta Physica Sinica, 2011, 60: 024202 doi: 10.7498/aps.60.024202
    [84] Lawson J K, Auerbach J M, English R E, et al. NIF optical specifications: the importance of the RMS gradient[C]//Proce of SPIE. 1999, 3492: 336-344.
    [85] Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: An overview[C]//Proc of SPIE. 2004, 5341: 84-102.
    [86] 温磊, 陈林, 陈伟, 等. 大口径N41型激光钕玻璃的小信号增益[J]. 光学 精密工程, 2016, 24(12):2925-2930. (Wen Lei, Chen Lin, Chen Wei, et al. Small signal gain of glass N41 in large aperture Nd: laser[J]. Optics and Precision Engineering, 2016, 24(12): 2925-2930
    [87] Ravizza F L, Nostrand M C, Kegelmeyer L M, et al. Process for rapid detection of fratricidal defects on optics using linescan phase differential imaging[R]. LLNL-PROC-420837, 2009.
    [88] 李平, 韩伟, 王伟, 等. 关联“热像”特性的缺陷带通成像检测技术[J]. 光学学报, 2017, 37:0914004. (Li Ping, Han Wei, Wang Wei, et al. Defect inspection by band-pass imaging related to hot image property[J]. Acta Optica Sinica, 2017, 37: 0914004
    [89] Adams J J, Arnold P A, Wegner P J, et al. Description of the NIF Laser[J]. Fusion Science & Technology, 2016, 69(1): 25-145.
    [90] 马腾才. 等离子体物理原理[M]. 合肥: 中国科学技术大学出版社, 1988.

    Ma Tengcai. Principles of plasma physics[M]. Hefei: China University of Science and Technology Press, 1988
    [91] 杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica, 2018, 48: 065203
    [92] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.
    [93] Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2): 339-566.
    [94] Moody J D, MacGowan B J, Rothenberg J E, et al. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Physical Review Letters, 2001, 86: 2810-2813.
    [95] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060.
    [96] 肖峻, 吕百达. 用零相关相位板匀滑散斑的理论研究[J]. 光学学报, 2000, 20(10):1341-1346. (Xiao Jun, Lv Baida. Theoretic study of smoothing speckles using zero-correlation phase plate[J]. Acta Optica Sinica, 2000, 20(10): 1341-1346 doi: 10.3321/j.issn:0253-2239.2000.10.008
    [97] Lehmberg R H, Rothenberg J E. Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks[J]. Journal of Applied Physics, 2000, 87(3): 1012-1022.
    [98] Dixit S N, Lawson J K, Manes K R, et al. Kinoform phase plates for focal plane irradiance profile control[J]. Optics Letters, 1994, 19(6): 417-419.
    [99] Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles[J]. Optics Letters, 1995, 20(7): 764-766.
    [100] Yang C, Zhang R, Xu Q, et al. Continuous phase plate for laser beam smoothing[J]. Applied Optics, 2008, 47(10): 1465-1469.
    [101] Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 1996, 21(20): 1703-1705.
    [102] Li Ping, Jin Sai, Zhao Runchang, et al. The special shaped laser spot for driving indirect-drive hohlraum with multi-beam incidence[J]. High Power Laser Science and Engineering, 2017, 5(3): 49-54.
    [103] 李平, 马驰, 粟敬钦, 等. 基于焦斑空间频谱控制的连续相位板设计[J]. 强激光与粒子束, 2008, 20(7):1114-1118. (Li Ping, Ma Chi, Su Jingqin, et al. Design of continuous phase plates for controlling spatial spectrum of focal spot[J]. High Power Laser and Particle Beams, 2008, 20(7): 1114-1118
    [104] 李平, 贾怀庭, 王芳, 等. 神光Ⅲ原型装置中连续相位板的应用位置分析[J]. 中国激光, 2009, 36(2):318-323. (Li Ping, Jia Huaiting, Wang Fang, et al. Analysis of continuous phase plates applying position for TIL facility[J]. Chinese Journal of Lasers, 2009, 36(2): 318-323
    [105] Moody J D, Baldis H A, Montgomery D S, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Physics of Plasmas, 1995, 2(11): 4285-4296.
    [106] Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Optics Communications, 1983, 46(1): 27-31.
    [107] Schmitt A J, Gardner J H. Illumination uniformity of laser-fusion pellets using induced spatial incoherence[J]. Journal of Applied Physics, 1986, 60(1): 6-13.
    [108] Obenschain S P, Grun J, Herbst M J, et al. Laser-target interaction with induced spatial incoherence[J]. Physical Review Letters, 1986, 56(26): 2807-2810.
    [109] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462.
    [110] Zhang R, Su J, Wang J, et al. Experimental research on the influences of smoothing by spectral dispersion on the Technical Integration Line[J]. Applied Optics, 2011, 50(5): 687-695.
    [111] Regan S P, Marozas J A, Craxton R S, et al. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of the Optical Society of America B: Optical Physic, 2005, 22(5): 998-1002.
    [112] Zhang Rui, Su Jingqin, Yuan Haoyu, et al. Research of beam conditioning technologies on SG-Ⅲ laser facility[C]//Proc of SPIE. 2014: 92930E.
    [113] Hohenberger M, Shvydky A, Marozas J A, et al. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion[J]. Physics of Plasmas, 2016, 23: 092702.
    [114] Joshua E R. Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion[C]//Proc of SPIE. 1995, 2633: 634-644.
    [115] Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Optics Letters, 2002, 27(9): 725-727.
    [116] Zhang R, Zhang X, Sui Z, et al. Research on beam smoothing characteristics using linearly modulated light[J]. Optics & Laser Technology, 2008, 40(8): 1018-1024.
    [117] 李平, 粟敬钦, 马驰, 等. 光谱色散匀滑对焦斑光强频谱的影响[J]. 物理学报, 2009, 58(9):6210-6215. (Li Ping, Su Jingqin, Ma Chi, et al. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot[J]. Acta Physica Sinica, 2009, 58(9): 6210-6215 doi: 10.3321/j.issn:1000-3290.2009.09.052
    [118] 郑天然, 张颖, 耿远超, 等. 基于集束多频调制的光谱色散匀滑技术[J]. 中国激光, 2017, 44:1205003. (Zheng Tianran, Zhang Ying, Geng Yuanchao, et al. Smoothing by spectral dispersion technology based on bundle multiple-frequency modulation[J]. Chinese Journal of Lasers, 2017, 44: 1205003
    [119] 王健, 钟哲强, 张彬, 等. 基于复合型光栅组合的多色集束匀滑方案[J]. 光学学报, 2018, 38:0814001. (Wang Jian, Zhong Zheqiang, Zhang Bin, et al. Beam smoothing scheme for multi-color laser quad based on a combination of hybrid gratings[J]. Acta Optica Sinica, 2018, 38: 0814001
    [120] 钟哲强, 周冰洁, 叶荣, 等. 多频多色光谱角色散束匀滑新方案[J]. 物理学报, 2014, 63:035201. (Zhong Zheqiang, Zhou Bingjie, Ye Rong, et al. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion[J]. Acta Physica Sinica, 2014, 63: 035201 doi: 10.7498/aps.63.035201
    [121] 刘兰琴, 张颖, 耿远超, 等. 小宽带光谱色散匀滑光束传输特性研究[J]. 物理学报, 2014, 63:164201. (Liu Lanqin, Zhang Ying, Geng Yuanchao, et al. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system[J]. Acta Physica Sinica, 2014, 63: 164201 doi: 10.7498/aps.63.164201
    [122] Hocquet S, Penninckx D, Gleyze J F, et al. Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion[J]. Applied Optics, 2010, 49(7): 1104-1115.
    [123] Short R W, Skupsky S. Frequency conversion of broad-bandwidth laser light[J]. IEEE Journal of Quantum Electronics, 1990, 26(3): 580-588.
    [124] Tsubakimoto K, Nakatsuka M, Nakano H, et al. Suppression of interference speckles produced by a random phase plate, using a polarization control plate[J]. Optics Communications, 1992, 91(1/2): 9-12.
    [125] Boehly T R, Smalyuk V A, Meyerhofer D D, et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser[J]. Journal of Applied Physics, 1999, 85(7): 3444-3447.
    [126] Rothenberg J E. Polarization beam smoothing for inertial confinement fusion[J]. Journal of Applied Physics, 2000, 87(8): 3654-3662.
    [127] Froula D H, Divol L, Berger R L, et al. Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas[J]. Physical Review Letters, 2008, 101(11): 100-103.
    [128] Collins T J B, Marozas J A, Anderson K S, et al. A polar-drive-ignition design for the National Ignition Facility[J]. Physics of Plasmas, 2012, 19(5): 2841.
    [129] 李平, 王伟, 赵润昌, 等. 基于焦斑空间频率全域优化的偏振匀设计[J]. 物理学报, 2014, 63:215202. (Li Ping, Wang Wei, Zhao Runchang, et al. Polarization smoothing design for improving the whole spatial frequency at focal spot[J]. Acta Physica Sinica, 2014, 63: 215202 doi: 10.7498/aps.63.215202
    [130] Liu Z J, Zheng C Y, Cao L H, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 2017, 24: 032701.
  • 加载中
图(7)
计量
  • 文章访问数:  1294
  • HTML全文浏览量:  406
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-09-14
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回